Despite decades of policies and programs meant to increase the representation of girls and women in science, technology, engineering, and mathematics (STEM), girls and women of color still represent a much smaller percent of the STEM workforce than they do in the US population. This lack of representation is preventing the US STEM workforce from reaching its true potential. Intersecting inequalities of gender, race, ethnicity, and class, along with stereotypes associated with who is successful in STEM (i.e., White men), lead to perceptions that they do not belong and may not succeed in STEM. Ultimately, these issues hinder girls’ STEM identity development (i.e., sense of belonging and future success), lead to a crisis of representation for women of color and have compounding impacts on the STEM workforce. Research suggests there are positive impacts of in-person STEM learning after-school and out-of-school time programs on girls’ sense of belonging. The increasing need for online learning initiated by the COVID-19 pandemic means it is vital to investigate girls’ STEM identity development within an online community. Thus, the project will refine and test approaches in online learning communities to make a valuable impact on the STEM identity development of girls of color by 1) training educators and role models on exemplary approaches for STEM identity development; 2) implementing a collaborative, girl-focused Brite Online Learning Community that brings together 400 girls ages 13-16 from a minimum of 10 sites across the United States; and 3) researching the impact of the three core approaches -- community building, authentic and competence-demonstrating hands-on activities, and interactive learning with women role models -- on participating girls’ STEM identities in online settings.
The mixed methods study is guided by guided by Carlone & Johnson’s model of STEM identity involving four constructs: competence, performance, recognition, and sense of belonging. Data collection sources for the quantitative portion of the project include pre- and post-surveys, while qualitative data sources will be collected from six case study sites and will include observations, focus group interviews with girls, artifacts created by girls and educators, educator interviews, and open-ended survey responses. This approach will enable the research team to determine how and the extent to which the Brite Online Learning Community influences STEM identity constructs, interpreting which practices lead to meaningful outcomes that can be linked to the development of STEM identity for participating girls in an online environment. The products of this work will include research-based, tested Brite Practices and a toolkit for fostering girls’ interest, identification, and long-term participation in STEM. The resulting products will increase the reach of informal STEM education programming to girls of color across the nation as online spaces can reach more girls, potentially increasing the representation of women of color in the STEM workforce.
The project will develop and research an after-school program designed to engage rural, Latinx youth in design thinking and math through making. Making is a learner-centered environment where participants design, create, and develop projects. Latinx individuals are underrepresented in the STEM workforce. The project will engage Latinx youth during the critical middle school years when young people make choices that affect their futures. The project will work with community members, after school staff, and youth as co-designers to develop and pilot the complete after school program. The program will involve Latinx youth who live in the agricultural regions of the Southwest United States with the goal of developing agency and positive identity, as makers, mathematical doers and users, and active community members. They will engage in developmentally appropriate mathematics, such as the volume and surface area of geometric shapes, within the context of informal learning projects. The program will comprise four semester-long after school projects, involving participants for 2-4 hours each week, during which time youth will design and create objects to address typical community challenges. Each project will incorporate smaller modules to enable youth with different attendance needs to participate. Real community problems (e.g., drought) and solution paths (e.g., water catchment system) will motivate the making and the mathematics. The program, co-designed in partnership with the Cesar Chavez Foundation, promises to reach 100,000 youth over the next decade. Because the program can serve as a model for others with similar goals, this reach has the potential to be expanded in many other communities.
Project research will address a gap in the current literature on mathematics, making, and community membership. The project connects community mathematics—the rich mathematical knowledge and practices drawn from communities—to educational making to both enrich understanding of school mathematics and aid in developing students’ positive mathematical and cultural identities. The project will also result in a model of professional development that can be used and studied by after school programs and researchers, contributing to the limited body of knowledge of professional development on STEM making for after school facilitators. The research design for this project will follow a mixed methods approach where quantitative and qualitative data collection and analysis will occur simultaneously. Results of both strands will be brought together at the interpretation and reporting level to compare and bring out the convergence, divergence, or complementarity of findings. The research will take place in two stages (co-design and pilot) over 3 years, with an additional half year for developing communications of the findings. Research will address the following questions: (1) What are the key features of projects for integrating community mathematics, school mathematics understanding, and design/making? (2) How do facilitators support the youth in engaging in program activities? (3) What math content and practices do youth learn through participation in program activities? and (4) How do youth’s agency and identity as makers, mathematics doers and users, and community members change with participation in the program? Program research and resources will be disseminated nationally through the Cesar Chavez Foundation and by sharing project research and resources through publications and conference presentations reaching researchers, educators, and program developers.
This Innovations in Development project explores radical healing as an approach to create after-school STEM programming that welcomes, values and supports African American youth to form positive STEM identities. Radical healing is a strength-based, asset centered approach that incorporates culture, identity, civic action, and collective healing to build the capacity of young people to apply academic knowledge for the good of their communities. The project uses a newly developed graphic novel as a model of what it looks like to engage in the radical healing process and use STEM technology for social justice. This graphic novel, When Spiderwebs Unite, tells the true story of an African American community who used STEM technology to advocate for clean air and water for their community. Youth are supported to consider their own experiences and emotions in their sociopolitical contexts, realize they are not alone, and collaborate with their community members to take critical action towards social change through STEM. The STEM Club activities include mentoring by African American undergraduate students, story writing, conducting justice-oriented environmental sciences investigations, and applying the results of their investigations to propose and implement community action plans. These activities aim to build youth’s capacity to resist oppression and leverage the power of STEM technology for their benefit and that of their communities.
Clemson University, in partnership with the Urban League of the Upstate, engages 100 predominantly African American middle school students and 32 African American undergraduate students in healing justice work, across two youth-serving, community-based organizations at three sites. These young people assume a leadership role in developing this project’s graphic novel and curriculum for a yearlong, after-school STEM Club, both constructed upon the essential components of radical healing. This project uses a qual→quant parallel research design to investigate how the development and use of a graphic novel could be used as a healing justice tool, and how various components of radical healing (critical consciousness, cultural authenticity, self knowledge, radical hope, emotional and social support, and strength and resilience) affect African American youths’ STEM identity development. Researchers scrutinize interviews, field observations, and project documents to address their investigation and utilize statistical analyses of survey data to inform and triangulate the qualitative data findings. Thus, qualitative and quantitative data are used to challenge dominant narratives regarding African American youth’s STEM achievements and trajectories. The project advances discovery and understanding of radical healing as an approach to explicitly value African Americans’ cultures, identities, histories, and voices within informal STEM programming.
DATE:
-
TEAM MEMBERS:
Renee LyonsRhondda ThomasCorliss Outley
Data is increasingly important in all aspects of people’s lives, from the day-to-day, to careers and to civic engagement. Preparing youth to use data to answer questions and solve problems empowers them to participate in society as informed citizens and opens doors to 21st century career opportunities. Ensuring equitable representation in data literacy and data science careers is critical. For many girls underrepresented in STEM, developing a "data science identity" requires personally meaningful experiences working with data. This project aims to promote middle school-aged girls’ interest and aspirations in data science through an identity-aligned, social game-based learning approach. The goals are to create a more diverse and inclusive generation of data scientists who see data as a resource and who are equipped with the skills and dispositions necessary to work with data in order to solve practical problems. The research team will run 10 social clubs and 10 data science clubs mentored by women in data science recruited through the University of Miami’s Institute for Data Science and Computing. Participants will be 250 middle school-aged girls recruited in Miami, FL, and Yolo County, CA, through local and national girls’ organizations. Youth will participate in a data science club and will learn key data science concepts and skills, including data structures, storage, exploration, analysis, and visualization. These concepts will be learned from working with their own data collected in personally meaningful ways in addition to working with data collected by others in the same social game eco-system. The project will also develop facilitator materials to allow adult volunteers to create game-based informal data science learning experiences for youth in their areas. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments and is co-funded by the Innovative Technology Experiences for Students and Teachers (ITEST), which seeks to engage underrepresented students in technology-rich learning environments, including skills in data literacy, and increase students’ knowledge and interest in information and communication technology (ICT) careers.
Researchers will focus on two primary research questions: 1) Across gameplay and club experiences, in what ways do participants engage with data to pursue personal or social goals? 2) How do gameplay and club experiences shape girls’ perceptions of data, data science, and their fit with data and data science? The project will use design-based research methods to iteratively design the game and social club experiences. To ensure that uses of data feel personally and socially meaningful to young girls, the virtual world’s goals, narratives, and activities will be co-designed with girls from groups underrepresented in data science. The project will research engagement with game data in two informal, game-based learning scenarios: organic, self-directed, social play club, and structured, adult-facilitated data science clubs. The research will use a combination of quantitative and qualitative methods including surveys, focus groups, interviews, and gameplay and club observations. Project evaluation will determine how gameplay and club experiences impact participants' attitudes toward and interest in data-rich futures. The project holds the potential for broadening participation and promoting interest in data science by blending game-based learning with the rich social and adult mentoring through club participation. The results will be disseminated through conference presentations, scholarly publications, and social media. The game and facilitator materials will be designed for dissemination and made freely available to the public.
DATE:
-
TEAM MEMBERS:
Lisa HardyGary GoldbergerJennifer Kahn
Chabot Space & Science Center will expand its work in youth development and community outreach by launching the Oakland Connected Learning Partnership program targeting underserved children and youth. Over the two-year project period, the museum will hire 12 teens each year from a Title I high school as paid interns. Museum educators will provide training and mentorship to prepare the interns to present STEM-based after-school programs for children aged 6-12 at local Girls & Boys Clubs. The teens will help to organize and present additional project activities, including Community Science Events at local libraries, public schools and places of worship. Each year of the project will culminate with a free Community Day at the museum for all participants. Community listening sessions at strategic intervals will help the project team understand resources and needs and obtain feedback on the program.
This poster was presented at the 2021 NSF AISL Awardee Meeting.
The project scales up an award-winning coaching model:
Informal educators come together in small groups to share videos of their own interactions with youth
A coach helps them share feedback based on their use of key skills (e.g. how to ask youth purposeful questions).
The Wayne State University Math Corps is a mathematics enrichment and mentoring program that operates during summers and on Saturdays. The curriculum and the pedagogies in this informal learning program have documented success of supporting youths' mathematics learning as well as raising achievement levels in school. Through rigorous research and evaluation, this project seeked to analyze and understand the nature, extent, and reasons for Math Corps' success with youth learning in Detroit as well as the processes of program replication in three sites: Cleveland, OH; Utica, NY; and Philadelphia
DiscoverE hired Concord Evaluation Group (CEG) to conduct an independent evaluation of the Future City program. Future City has been operating since 1992. According to DiscoverE, the Future City program is “a national, project-based learning experience where students in 6th, 7th, and 8th grade imagine, design, and build cities of the future. Students work as a team with an educator and engineer mentor to plan cities using SimCityTM software; research and write solutions to an engineering problem; build tabletop scale models with recycled materials; and present their ideas before judges at
Future City, operating since 1992, is “a national, project-based learning experience where students in sixth, seventh, and eighth grade imagine, design, and build cities of the future. Students work as a team with an educator and engineer mentor to plan cities using SimCityTM software, research and write solutions to an engineering problem, build tabletop scale models with recycled materials, and present their ideas before judges at regional competitions in January. Regional winners represent their region at the National Finals in Washington, DC in February.
Future City’s cross-curricular
This poster was presented at the 2021 NSF AISL Awardee Meeting.
Persons who are deaf or hard of hearing are underrepresented in the STEM workforce. A key factor is lack of awareness of STEM careers or of examples of STEM professionals. SWS has developed 8 video stories for viewing at home or while attending a boys and girls club. Evaluation will provide new knowledge about design, use, and potential impact of the stories on our audience’s interest in pursuing STEM and possibly a STEM career.
This poster was presented at the 2021 NSF AISL Awardee Meeting.
The archaeology after-school program, geared towards rural middle school students, explores the ability to teach STEM through archaeology. The multidisciplinary nature of archaeology makes it a useful vehicle for teaching a variety of STEM disciplines (e.g., biology, geology, ecology, zoology, physics, chemistry, mathematics, etc.). Its compatibility with hands-on activities, deep thinking skills, and scientific reasoning matches STEM learning goals.
This poster was presented at the 2021 NSF AISL Awardee Meeting.
Collaborative robots – cobots – are designed to work with humans, not replace them. What learning affordances are created in educational games when learners program robots to assist them in a game instead of being the game? What game designs work best?