This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The project studied middle-school students using the Waves exhibit in order to understand how interacting with functional metaphors in a mixed reality environment impacts conceptual change, motivation, and scientific habits of mind while engaged in learning physics content.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Through My Window is engineering education that applies research from the learning sciences—including the use of cognitive tools such as narrative and knowledge building—in an idea-centered digital environment. Together these approaches support deep learning and address the critical need of preparing young learners to participate in the knowledge society. The curriculum includes young adult novels; interactive, online learning modules; and offline enrichment
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The project's research goal is to identify the most important exhibit design attributes for engaging girls at STEM exhibits.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. This project engages underserved Native and non-native youth and adults in environmental science content and awareness through innovative exhibitions and hands-on activities. Traditional ecological knowledge (TEK) and western science are communicated and promoted within culturally relevant contexts as valuable, complementary ways of knowing, understanding, and caring for the world.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Designing Our World (DOW) empowers and promotes girls’ pursuit of engineering careers by cultivating networks of community stakeholders and engaging girls with experiences that illuminate the social, personally relevant and altruistic nature of engineering.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. After-School Math Plus (ASM+) combines inquiry-based, hands-on activities connected to students’ interests outside
of school; standards-aligned skill development; strong focus on reaching groups underrepresented in math; role models and career exploration; and family involvement.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. WISE Guys & Gals (WGG) is an Informal STEM program that engages early adolescents (middle school age youth) in innovative and engaging blended (on-line and hands-on) STEM based engineering challenges. WISEngineering, the open source online learning environment, that supports WGG, connects and blends the strengths of virtual design and physical modeling while also facilitating youth collaboration and collection of data for research.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. In this project, Twin Cities Public Television (TPT) will produce Latina SciGirls, a fourth season of the Emmy Award-winning television and transmedia project SciGirls.
In Spring 2006, the Missouri Botanical Garden received a National Science Foundation grant to fund the LIONS program. LIONS trained educators from the St. Louis region, through professional development about place-based education, to deliver after school and summer programming to students grades 5 through 8. Since its inception, the LIONS program has included evaluation of program implementation and outcomes. There were dramatic changes in the scope of the program, which expanded beyond the originally targeted University City school district by adding additional schools recruited by LIONS
The Cyberlearning and Future Learning Technologies Program funds efforts that support envisioning the future of learning technologies and advance what we know about how people learn in technology-rich environments. In this Cyberlearning EAGER project, the project team is developing foundations for using "paper mechatronics" as a learning technology. Paper mechatronics makes possible a craft-oriented approach to engineering and computing education that integrates key concepts from mechanical engineering, electrical engineering, control systems, and computer programming, while using paper as the primary material for learner design, exploration, and inquiry. In this approach, learners will design foldable paper components and assemblies; program motors, sensors and controls; test their ideas iteratively; and share their designs on a website. This paper-based modeling approach to learning concepts in and practices of mechanical engineering, electrical engineering, control systems, and computer programming ultimately aims to make it possible for all learners to have exposure to and the opportunity to participate in creative engineering, design, and computer programming.
The approach to learning through designing and making through paper mechatronics is made possible by a convergence of many different technological factors -- the array of small computers, sensors, and actuators that are becoming available at low cost and a size that children can use; availability of a wide variety of manipulable conductive materials (threads, paints, fabrics); low-cost and precise desktop and laser cutters for paper and similar materials; a wide variety of novel paper-like materials; and new ways of interacting with the computer. The approach has its foundations in Papert's constructionism and in the current maker movement, but it has potential beyond constructionism itself, both in practice and with respect to what can potentially be learned about learning and development in in context of its use.
The University of Minnesota Extension (UME) contracted Garibay Group to conduct a summative evaluation of the Driven to Discover program (often referred to as D2D by youth participants and adult leaders) to assess how adult leaders in Informal Science Education (ISE) settings used the curriculum and citizen science projects as conduits to engage youth in scientific inquiry.
This report describes an evaluation of two educational programs that Iridescent offered with a grant from the National Science Foundation. These two programs were developed for youth and their families and were organized around open-ended Engineering Design Challenges. These are hands-on problem-solving activities supported by a web-based platform known as the Curiosity Machine. The Curiosity Machine and the Design Challenges were designed to work together to engage learners in fundamental physics and engineering concepts in fun and open-ended ways, while enhancing their curiosity, creativity