The Kaulele Kapa Exhibit was created to explore the effectiveness of a Hawaiian culture-based framework and approach in increasing learner engagement and depth of knowledge in STEM among Native Hawaiian/Pacific Islander (NHPI) learners. The exhibit utilized hands-on and interactive activities, coupled with scientific and cultural information, to create relevant learning experiences for these communities. To determine the effectiveness, exhibit attendees were invited to complete a survey that asked about how the exhibit influenced their interest and understanding of STEM and Hawaiian culture
The University of Montana spectrUM Discovery Area will implement “Making Across Montana” —a project to engage K–12 students and teachers in rural and tribal communities with making and tinkering. In collaboration with K–12 education partners in the rural Bitterroot Valley and on the Flathead Indian Reservation, the museum will develop a mobile making and tinkering exhibition and education program. The exhibition will be able to travel to K–12 schools statewide. The project team will develop a K–12 teacher professional development workshop, along with accompanying curriculum resources and supplies. The traveling program and related materials will build schools’ capacity to incorporate making and tinkering—and informal STEM experiences more broadly—into their teaching.
Abstract STEM education programs are often formulated with a "hands-on activities" focus across a wide array of topics from robotics to rockets to ecology. Traditionally, the impact of these programs is based on surveys of youth on program-specific experiences or the youths’ interest and impressions of science in general. In this manuscript, we offer a new approach to analyzing science programming design and youth participant impact. The conceptual framework discussed here concentrates on the organization and analysis of common learning activities and instructional strategies. We establish
The Lewis H. Latimer House Museum will develop a more cohesive education program that reflects both the museum's resources and the needs of local schools. The museum's deputy director and Tinkering Lab educator will work together to design a curriculum that meets current New York State and city standards, enabling the museum to more effectively serve schools in the community with object-based learning experiences. Packets of educational materials will be developed and made available for school teachers to download and use in their classrooms prior to and following visits to the museum. Target schools will be actively involved in the process of testing and utilizing the products. Project results will be shared with internal and external stakeholders to sustain long-term improvement and enhance institutional capacity.
The Massachusetts Audubon Society will develop, pilot, and implement an evaluation framework for nature-based STEM programming that serves K-12 students visiting its network of nature centers and museums. Working with an external consultant, the society will develop the framework comprised of a logic model and theory of change for fieldtrips, and develop a toolkit of evaluation data collection methodology suitable to various child development stages. The project team will design and conduct three professional development training seminars to help Massachusetts Audubon school educators develop a working understanding of the new evaluation framework for school programs and gain the skills necessary to support protocol implementation. This project will result in the development and adoption of a universal protocol to guide the collection, management, and reporting of education program evaluation data across the 19 nature centers and museums in the Massachusetts Audubon system.
The Garfield Park Conservatory will launch a new initiative to expand and improve its offerings for local students and teachers with a focus on meeting the needs of Title I schools and under-served schools on Chicago's West Side. The new Student Engagement and Educational Development (SEED) program is designed to enhance the quality of fieldtrip experiences for PreK-8 students visiting the conservatory; support teachers in planning and connecting their conservatory fieldtrips to their classroom studies; align fieldtrip content to Next Generation Science Standards; provide increased access to STEM-based fieldtrips for the city's Title I schools; and connect under-resourced schools on Chicago's West Side more deeply to the conservatory. This program will build the organization's capacity to serve more students and teachers each year, and make the conservatory more appealing to teachers, more engaging for students, and easier to access for low-income schools that struggle to provide their students fieldtrip experiences.
The paper presents and discusses the Research and Development and related reflective practice process for the design of an approach to STEM school education. It focuses on Future Inventors, an education project of the National Museum of Science and Technology Leonardo da Vinci which aims to design, develop, test, and define an approach for teaching and learning in STEM at junior high school. Through this case study, the authors argue for the need to design for learning activities in which children can learn creatively building on their own potential and, for educators, to develop and maintain
Presentation slides and narration for the NARST 2022 Annual Conference. In this presentation we summarize findings from our interviewed with undergraduate STEM majors who identify as Latine, homing in on the ways in which they characterize "STEM" and "STEM people" and their descriptions of K-12 experiences that contributed to their characterizations of these concepts.
Access & opportunity in STEM remain limited for youth from historically underrepresented backgrounds in the US & UK. We present findings grounded in Participatory Ethnographies into STEM pathways, highlighting how youth participate in ISL across time and settings in equitable and transformative ways, and practices that ISL practitioners engage in towards supporting pathway authoring. We take a pathways lens to highlight the multiple directions one may take through a particular ecology towards a wide range of outcomes beyond the STEM career, such as STEM agency and identities. Our study
This poster was presented at the 2021 NSF AISL Awardee Meeting.
How does a long-lasting, statewide, out-of- school science learning experience influence how key stakeholders think about the value of out-of-school learning and its intersection with in-school learning?
Identity development frameworks provide insight into why and to what extent individuals engage in STEM related activities. While studies of “STEM identity” often build off previously validated disciplinary and/or science identity frameworks, quantitative analyses of constructs that specifically measure STEM identity and its antecedents are scarce, making it challenging for researchers or practitioners to apply a measurement-based perspective of participation in opportunities billed as “STEM.” In this study, we tested two expanded structural equation models of STEM identity development
An individual's sense of themselves as a “STEM person” is largely formed through recognition feedback. Unfortunately, for many minoritized individuals who engage in STEM (science, technology, engineering, and mathematics) in formal and informal spaces, this recognition often adheres to long-standing exclusionary expectations of what STEM participation entails and institutionalized stereotypes of what it means to be a STEM person. However, caregivers, who necessarily share cultural backgrounds, norms, and values with their children, can play an important role in recognizing their children's
DATE:
TEAM MEMBERS:
Heidi CianRemy DouSheila CastroElizabeth Palma-D'souzaAlexandra Martinez