Connecting Tennessee to the World Ocean is a three-year capacity building project of the Tennessee Aquarium and its partners, the Hamilton County Department of Education, Calvin Donaldson Environmental Science Academy, and NOAA's National Weather Service. Expanded capacity, in turn, allows the institution to reach a broader audience with a message connecting Tennessee's waterways to the world ocean. Primary project outcomes are increased ocean literacy and expanded ocean stewardship ethics in targeted Aquarium audiences. A series of specific activities focused on ocean literacy and global change make this possible, including expanding Aquarium classroom capacity by 60% to serve more students, expanded videoconferencing opportunities in partnership with NWS, free admission and programming for underrepresented students from across the region, expanded educational opportunities on the Aquarium s website, updated interpretive panels focusing on global change, installation of a NOAA WeatherBug station, a civic engagement series, and professional development for Aquarium educators.
Teen Conservation Leadership is a major integration and expansion of the Monterey Bay Aquarium's existing teen education programs (Student Oceanography Club, Young Women in Science and Student Guides). The project is growing and enhancing these programs through the following activities: - Service-Learning and Leadership Activities, including: Guest Service Track: professional development and training as interpreters Camp and Club Track: serving as a mentor for other participants Program Track: assisting in the delivery of programs - Conservation and Science Activities, including participating in and leading projects with local organizations, and participating in technologically facilitated outdoor learning experiences - Teen Network and Technology Activities, including onsite networking and information sharing through Web 2.0 technology The project will reach 930 teens. Each teen will provide 200 service-learning hours per year. The sequential nature of this project will encourage many teens to participate for multiple years.
The American Museum of Natural History, in association with several NOAA entities, will be creating a suite of media products employing visualization of Earth-observation data as well as associated professional development programs to expand educational experiences in informal science institutions nationwide. Interactive versions of the visualizations will also be disseminated via the AMNH website. Visualization assets will be distributed to NOAA for utilization on climate.gov and Science on a Sphere. The creation of training programs and educational materials for informal education professionals will enhance the experience and efficacy of the data visualizations as tools to understand and build stewardship of Earth systems.
The Cyberlearning and Future Learning Technologies Program funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Cyberlearning Exploration (EXP) Projects explore the viability of new kinds of learning technologies by designing and building new kinds of learning technologies and studying their possibilities for fostering learning and challenges to using them effectively. This project brings together two approaches to help K-12 students learn programming and computer science: open-ended learning environments, and computer-based learning analytics, to help create a setting where youth can get help and scaffolding tailored to what they know about programming without having to take tests or participate in rigid textbook exercises for the system to know what they know.
The project proposes to use techniques from educational data mining and learning analytics to process student data in the Alice programming environment. Building on the assessment design model of Evidence-Centered Design, student log data will be used to construct a model of individual students' computational thinking practices, aligned with emerging standards including NGSS and research on assessment of computational thinking. Initially, the system will be developed based on an existing corpus of pair-programming log data from approximately 600 students, triangulating with manually-coded performance assessments of programming through game design exercises. In the second phase of the work, curricula and professional development will be created to allow the system to be tested with underrepresented girls at Stanford's CS summer workshops and with students from diverse high schools implementing the Exploring Computer Science curriculum. Direct observation and interviews will be used to improve the model. Research will address how learners enact computational thinking practices in building computational artifacts, what patters of behavior serve as evidence of learning CT practices, and how to better design constructionist programming environments so that personalized learner scaffolding can be provided. By aligning with a popular programming environment (Alice) and a widely-used computer science curriculum (Exploring Computer Science), the project can have broad impact on computer science education; software developed will be released under a BSD-style license so others can build on it.
DATE:
-
TEAM MEMBERS:
Shuchi GroverMarie BienkowskiJohn Stamper
Education stakeholders from advocates to developers are increasingly recognizing the potential of science games in advancing student academic motivation for and interest in science and science careers. To maximize this potential, the project will use science games (e.g. Land Science, River City, and EcoMUVE), shown to be enjoyable to students and proven to promote student learning in science at the middle school level. Through a two-phase process, games will be used as vehicles for learning about ways to change how students think about science and potentially STEM careers. The goal of the intervention is to explore which processes and design features of science games will actually help students move beyond a temporary identity of being a scientist or engineer (as portrayed while playing the game) to one where students began to see themselves in real STEM careers. Students' participation will be guided by teams of teachers, faculty members, and graduate students from Drexel University and a local school. All science students attending the local inner city middle school in Philadelphia, PA, will participate in the intervention.
Using an exploratory mixed-method design, the first two years of the project will focus on exploring, characterizing, coding, and analyzing data sets from three large games designed to help students think about possible careers in science. During year 3, the project will integrate lessons learned from the first two years into the existing middle school science curriculum to engage students in a one-year intervention using PCaRD (Play Curricular activity Reflection Discussion). During the intervention, the PI will work with experts from Drexel University and a local school to collect data on the design features of Land Science to capture identity change in the science identity of the participating students. Throughout the course of year 3, the PI will observe, video, interview, survey, and use written tasks to uncover if the Land Science game is influencing students' identity in any way (from a temporary to a long-term perspective about being a scientist or engineer). Data collected during three specified waves during the intervention will be compared to analyses of existing logged data through collaborations with researchers at Harvard University and the University of Wisconsin-Madison. These comparisons will focus on similar middle-aged science students who used the same gaming environments as the students involved in this study. However, the researcher will intentionally look for characteristics related to motivation, science knowledge, and science identity change.
This project will integrate research and education to investigate learning as a process of change in student science identity within situated environmental contexts of digital science gameplay around curricular and learning activities. This integrated approach will allow the researcher to explore how gaming is inextricably linked to the student as an individual while involved in the learning of domain specific content in science. The collaboration among major university and school partners; the expertise of the researcher in educational psychology, educational technology, and science games; and the project's advisory board makes this a real-life opportunity for the researcher to use information that naturally exists in games to advance knowledge in the field about the value of gaming to changing students' science identities. It also responds to reports by the National Research Council committee on science learning and computer games, which identifies games as having the potential to catalyze new approaches to science learning.
This final evaluation report shares findings from the summative evaluation study of the Connected Science Learning: Linking In-School and Out-of-School STEM Learning (CSL) journal as well as themes that emerged across the broader three-year evaluation study. The ongoing study was conducted by researchers at the Center for Research on Lifelong STEM Learning at Oregon State University in collaboration with the National Science Teachers Association (NSTA) and the Association of Science-Technology Centers (ASTC).
The CSL journal was the result of an Early-concept Grant for Exploratory Research
The National Science Teachers Association (NSTA) and the Association for Science-Technology Centers (ASTC), with support from the National Science Foundation (NSF), has launched an initiative to develop and distribute two pilot issues of a new resource for STEM education practitioners in both formal and informal (out-of-school) settings. An aim of the new resource is to better connect practitioners across education settings and the research and knowledge base about STEM learning. David Heil & Associates, Inc. (DHA) is serving in a co-PI role on the grant to provide NSTA and ASTC with
This report details the formative evaluation study conducted through collaboration with the National Science Teachers Association (NSTA) and the Association of Science-Technology Centers (ASTC) to inform the iterative development and piloting of the Connected Science Learning: Connecting In-School and Out-of-School STEM Learning journal. The journal was the result of an Early Concept Grant for Exploratory Research (EAGER) project funded by the National Science Foundation (NSF) to develop, disseminate and evaluate a new resource for connecting STEM education practitioners across settings and to
C-RISE will create a replicable, customizable model for supporting citizen engagement with scientific data and reasoning to increase community resiliency under conditions of sea level rise and storm surge. Working with NOAA partners, we will design, pilot, and deliver interactive digital learning experiences that use the best available NOAA data and tools to engage participants in the interdependence of humans and the environment, the cycles of observation and experiment that advance science knowledge, and predicted changes for sea level and storm frequency. These scientific concepts and principles will be brought to human scale through real-world planning challenges developed with our city and government partners in Portland and South Portland, Maine. Over the course of the project, thousands of citizens from nearby neighborhoods and middle school students from across Maine’s sixteen counties, will engage with scientific data and forecasts specific to Portland Harbor—Maine’s largest seaport and the second largest oil port on the east coast. Interactive learning experiences for both audiences will be delivered through GMRI’s Cohen Center for Interactive Learning—a state-of-the-art exhibit space—in the context of facilitated conversations designed to emphasize how scientific reasoning is an essential tool for addressing real and pressing community and environmental issues. The learning experiences will also be available through a public web portal, giving all area residents access to the data and forecasts. The C-RISE web portal will be available to other coastal communities with guidance for loading locally relevant NOAA data into the learning experience. An accompanying guide will support community leaders and educators to embed the interactive learning experiences effectively into community conversations around resiliency. This project is aligned with NOAA’s Education Strategic Plan 2015-2035 by forwarding environmental literacy and using emerging technologies.
The Peg + Cat ELM2 project sought to combine robust media-integrated teacher training in both math content and facilitation of classroom and family engagement activities with transmedia resources that parents and children could utilize at home. This cohesive approach resulted in increases in teachers’ confidence in and knowledge about their mathematics instruction, parents’ engagement in activities and conversations with their children around math, and children’s positive and persistent attitudes towards math, as reported by their parents. Taken together, these findings suggest that the Peg +
Girls met to engage with Through My Window twice each week after school. The afterschool program format provided a freer, less structured atmosphere than a classroom setting. Students extensively debated and investigated the questions and themes posed by the novel, Talk to Me. The meeting space had plenty of space for students to move around, as well as teachers who encouraged the expression of full emotional and intellectual enthusiasm for the story at hand.
East Longmeadow implemented Through My Window in two seventh grade classrooms, each teaching different subjects—creative reading and STEAM. Students used the print and audio versions of Talk to Me, and read or listened to the book independently and together, in class and at home. They also participated in both online and offline activities that, along with the book, helped them engage with ideas and propose solutions related to engineering challenges.