Equipping today's youth with the skills necessary to compete in the 21st Century workforce is a top priority of our nation's schools, communities, policy makers and businesses. This issue brief examines how afterschool provides kids with the opportunity to develop skills to help them succeed in an increasingly competitive labor market.
The 21st century's information economy is creating more jobs that require not only a college education but also at least some expertise in the fields of science, technology, engineering and math, collectively known as STEM. In order to stay competitive in the global marketplace and provide our children with the best chance to succeed in life, we must get more students on the STEM path. Combining STEM learning with afterschool programming offers middle school students a fun, challenging, hands-on introduction to the skills they will need in high school, college and the work place. This MetLife
Digital media and technology are revolutionizing how, where and when children learn, compelling many educators to completely re-imagine what a learning experience looks like. At the core of effective digital media and learning is the principle that instructional strategies should be personalized and that technology is a tool that supports effective teaching and learning practices. Afterschool programs are an ideal setting for digital learning--excelling at providing interest-driven learning opportunities can learn at their own pace, participate in hands-on learning experiences, and engage in
Afterschool programs have long partnered with other youth-serving and community organizations to better meet the needs of their students. As interest and momentum grows around STEM programming in afterschool , partnerships become increasingly important in offering high-quality, hands-on STEM experiences for youth. This issue brief demonstrates several models of how afterschool programs are partnering with STEM-rich institutions like science centers and museums, universities and colleges, business and industry, and government agencies. The brief highlights the strengths of each type of STEM
DATE:
TEAM MEMBERS:
Afterschool Alliance
resourceprojectProfessional Development, Conferences, and Networks
The Coalition for Science After School (CSAS) was established in 2004 in response to the growing need for more STEM (science, technology, engineering, and mathematics) learning opportunities in out-of-school time. CSAS sought to build this field by uniting STEM education goals with out-of-school time opportunities and a focus on youth development. Over a decade of work, CSAS Steering Committee members, staff and partners advocated for STEM in out-of-school-time settings, convened leaders, and created resources to support this work. CSAS leadership decided to conclude CSAS operations in 2014, as the STEM in out-of-school time movement had experienced tremendous growth of programming and attention to science-related out-of-school time opportunities on a national level. In its ten-year strategic plan, CSAS took as its vision the full integration of the STEM education and out-of-school time communities to ensure that quality out-of-school time STEM opportunities became prevalent and available to learners nationwide. Key CSAS activities included: (1) Setting and advancing a collective agenda by working with members to identify gaps in the field, organizing others to create solutions that meet the needs, identifying policy needs in the field and supporting advocates to advance them; (2) Developing and linking committed communities by providing opportunities for focused networking and learning through conferences, webinars, and other outreach activities; and (3) Identifying, collecting, capturing, and sharing information and available research and resources in the field. The leadership of the Coalition for Science After School is deeply grateful to the funders, partners, supporters, and constituents that worked together to advance STEM in out-of-school time during the last decade, and that make up today's rich and varied STEM in out-of-school time landscape. We have much to be proud of, but as a movement there is much more work to be done. As this work continues to expand and deepen, it is appropriate for the Coalition for Science After School to step down as the many other organizations that have emerged over the last decade take on leadership for the critical work that remains to be done. A timeline and summary of CSAS activities, products, and accomplishments is available for download on this page. All resources noted in the narrative are also available for download below.
The Coalition for Science After School was launched January 28, 2004 at the Santa Fe Institute, home to the world’s leading researchers on the study of complexity. Against the dazzling backdrop of the New Mexican mesa, 40 educational leaders from diverse but overlapping domains—science, technology, engineering and mathematics education and after-school programs—met to grapple with three emerging, important trends in youth development and science learning in this country: 1. An explosion in the number of U.S. youth attending after-school programs, and increasing links between school and after
DATE:
TEAM MEMBERS:
The Coalition for Science After SchoolLeah Reisman
This paper describes the integration of handheld computer technology into an existing web-based educational platform, the Web-based Inquiry Science Environment (WISE) and the synergy it produces. This solution facilitated a research program that explores how handheld computers (PDAs, palmtops, etc.) can expand the scope and functionality of inquiry activities in K-12 science and mathematics curriculum. The paper presents the WISE software and curriculum and explains how combining it with handheld technology creates unique educational opportunities. It then goes on to describe the system that
Open collaborative authoring systems such as Wikipedia are growing in use and impact. How well does this model work for the development of educational resources? In particular, can volunteers contribute materials of sufficient quality? Could they create resources that meet students’ specific learning needs and engage their personal characteristics? Our experiment explored these questions using a novel web-based tool for authoring worked examples. Participants were professional teachers (math and non-math) and amateurs. Participants were randomly assigned to the basic tool, or to an enhanced
DATE:
TEAM MEMBERS:
Turadg AleahmadVincent AlevanRobert Kraut
This report focuses on the use of games as resources to support the educational aims, objectives, and planned outcomes of teachers who understand that games are an important medium in contemporary culture and young people's experiences. The report provides an assessment of game-based learning in UK schools. It is intended to test out the hype and enthusiasm for using games in education and to identify a sensible rationale and practical strategies for teachers to try out games in the classroom.
This report for educators aims to examine the current landscape of adult informal learning using digital technologies. It provides new data on adult use of technology for informal learning and outlines the existing landscape of tools, resources and services which can support this. It aims to develop a shared understanding of the ways in which digital technologies are used for adult informal learning, and how this could be supplemented to enhance and transform adult informal learning in the future.
This action plan lays out a structure that will allow stakeholders from local, State, and Federal governments, as well as nongovernmental STEM education stakeholder groups, to work together to coordinate and enhance the Nation's ability to produce a numerate and scientifically and technologically literate society and to increase and improve the current STEM education workforce. Strategies for producing the next generation of innovators are not explicitly addressed in this action plan and will require subsequent study. A coherent system of STEM education is essential to the Nation's economy and
The Maker Program Blueprint offers a template for afterschool or summer programs and addresses the types of spaces that can be used, ideas about schedules and format, and the materials and personnel needed to create and sustain a program.