Skip to main content

Community Repository Search Results

resource project Media and Technology
A recent report by the Association for Computing Machinery estimates that by decade's end, half of all STEM jobs in the United States will be in computing. Yet, the participation of women and underrepresented groups in post-secondary computer science programs remains discouragingly and persistently low. One of the most important findings from research in computer science education is the degree to which informal experiences with computers (at many ages and in many settings) shape young people's trajectories through high school and into undergraduate degree programs. Just as early language and mathematics literacy begins at home and is reinforced throughout childhood through a variety of experiences both in school and out, for reasons of diversity and competency, formal experiences with computational literacy alone are insufficient for developing the next generation of scientists, engineers, and citizens. Thus, this CAREER program of research seeks to contribute to a conceptual and design framework to rethink computational literacy in informal environments in an effort to engage a broad and diverse audience. It builds on the concept of cultural forms to understand existing computational literacy practices across a variety of learning settings and to contribute innovative technology designs. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds new approaches to and evidence-based understanding of the design and development of STEM learning in these settings. This CAREER program of research seeks to understand the role of cultural forms in informal computational learning experiences and to develop a theoretically grounded approach for designing such experiences for youth. This work starts from the premise that new forms of computational literacy will be born from existing cultural forms of literacy and numeracy (i.e., for mathematical literacy there are forms like counting songs -- "10 little ducks went out to play"). Many of these forms play out in homes between parents and children, in schools between teachers and students, and in all sorts of other place between friends and siblings. This program of study is a three-phased design and development effort focused on key research questions that include understanding (1) how cultural forms can help shape audience experiences in informal learning environments; (2) how different cultural forms interact with youth's identity-related needs and motivations; and (3) how new types of computational literacy experiences based on these forms can be created. Each phase includes inductive research that attempts to understand computational literacy as it exists in the world and a design phase guided by concrete learning objectives that address specific aspects of computational literacy. Data collection strategies will include naturalist observation, semi-structured, and in-depth interviews, and learning assessments; outcome measures will center on voluntary engagement, motivation, and persistence around the learning experiences. The contexts for research and design will be museums, homes, and afterschool programs. This research builds on a decade of experience by the PI in designing and studying computational literacy experiences across a range of learning settings including museums, homes, out-of-school programs, and classrooms. Engaging a broad and diverse audience in the future of STEM computing fields is an urgent priority of the US education system, both in schools and beyond. This project would complement substantial existing efforts to promote in-school computational literacy and, if successful, help bring about a more representative, computationally empowered citizenry. The integrated education plan supports the training and mentoring of graduate and undergraduate students in emerging research methods at the intersection of the learning sciences, computer science, and human-computer interaction. This work will also develop publically available learning experiences potentially impacting thousands of youth. These experiences will be available in museums, on the Web, and through App stores.
DATE: -
TEAM MEMBERS: Michael Horn
resource project Media and Technology
The Cyberlearning and Future Learning Technologies Program funds efforts that support envisioning the future of learning technologies and advance what we know about how people learn in technology-rich environments. Development and Implementation (DIP) Projects build on proof-of-concept work that shows the possibilities of the proposed new type of learning technology, and PI teams build and refine a minimally-viable example of their proposed innovation that allows them to understand how such technology should be designed and used in the future and that allows them to answer questions about how people learn, how to foster or assess learning, and/or how to design for learning. This project is building and studying a new type of online learning community. The WeatherBlur community allows kids, teachers, scientists, fishermen/fisherwomen, and community members to learn and do science together related to the local impacts of weather and climate on their coastal communities. Members of the community propose investigations, collect and share data, and learn together. WeatherBlur is designed to be a new form of knowledge-building community, the Non-Hierarchical Online Learning Community. Unlike other citizen science efforts, there is an emphasis on having all members of the community able to propose and carry out investigations (and not just help collect data for investigations designed by expert scientists or teachers). Prior research has demonstrated important structural differences in WeatherBlur from other citizen science learning communities. The project will use social network analysis and discourse analysis to measure learning processes, and Personal Meaning Mapping and embedded assessments of science epistemology and graph interpretation skills to examine outcomes. The measures will be used to explore knowledge-building processes and the scaffolds required to support them, the negotiation of explanations and investigations across roles, and the epistemic features that drive this negotiation process. The work will be conducted using an iterative design-based research process in which the prior functioning WeatherBlur site will be enhanced with new automated prompt and notification systems that support the non-hierarchical nature of the community, as well as tools to embed assessment prompts that will gauge participants' data interpretation skills and epistemic beliefs. Exponential random graph modeling will be used to analyze the social network analysis data and test hypotheses about the relationship between social structures and outcomes.
DATE: -
TEAM MEMBERS: Ruth Kermish-Allen Christine Bevc Karen Peterman
resource project Media and Technology
The Internet has seen an explosive growth in the past few years, and masses of information on cancer are readily available to anyone with a live connection. Unfortunately, the vast majority of this information is presented in long test passages, with few illustrations and non multi- media elements to increase user interest. Absent are materials that help people appreciate how basic research in cancer genetics is being rapidly translated into new options for diagnosis, treatment and prevention. We seek support to create an extensive WWW site, Inside Cancer, which literally will take people into the workings of the cancer cell and into the laboratories of scientists who are revolutionizing cancer research. Building upon the project staff's strong experience in building multimedia WWW sites, Inside Cancer will make use of the most up-todate technology to merge animation and video into a visually stimulating experience. At the same time, the project draws scientific authority from a world-renowned research institute and advisors who have played important roles in the development of modern cancer research. Five modules will be developed. What is Cancer? quickly answers this and other related questions in short animations and prepares more curious visitors for the next modules. Cancer in the Laboratory features researchers explaining animated sequences of their own experiments, which laid the foundation for understanding cancer at the molecular level. Cancer Causes and Prevention animates the molecular events triggered by carcinogens, such as tobacco smoke and diet and emphasizes how lifestyle changes can reduce cancer risk. In Cancer Diagnosis and Treatment visitors shadow doctors making a cancer diagnosis, showing the connections between cancer cell alterations and new treatment options. Pathways to Cancer takes visitors on a 3-dimensional tour of a cell and its signaling pathways, then allows them to see downstream effects of mutations and their relation to cancer evelopment. As new findings and therapies are discovered, we will update the modules to keep Inside Cancer current.
DATE: -
TEAM MEMBERS: David Micklos Shirley Chan Susan Lauter
resource project Media and Technology
The Exploratorium comes together with the Education Development Center, Inverness Research, TERC, the University of Colorado - Boulder, and the University of Washington to form a Research+Practice (R+P) Collaboratory. The Collaboratory seeks to address and reframe the gap between research and practice in K-12 STEM education. This gap persists despite decades of work by many leading organizations, associations, and individuals. Attempts to close the gap have generally focused on creating resources and mechanisms that first explain or illustrate "what research says" and then invite educators to access and integrate findings into practice. Recently, however, attention has turned to the ways in which the medical sciences are addressing the gap between research and clinical practice through the developing field of "translational research." In medicine, the strategy has been to shift the focus from adoption to adaptation of research into practice. Implicit in the notion of adaptation is a bi-directional process of cultural exchange in which both researchers and practitioners come to understand how the knowledge products of each field can strengthen the professional activities in the other. Along these lines, the R+P Collaboratory is working with leading professional associations and STEM improvement efforts to leverage their existing knowledge and experience and to build sustainable strategies for closing the gap. The R+P Collaboratory is developing an online 'Go-To' Resource Center website that houses the resources collected, created, and curated by the Collaboratory. The Resource Center also has significant 'Take-Out' features, with all materials meta-tagged so that they can be automatically uploaded, reformatted, and integrated into the existing communication and professional development mechanisms (e.g., newsletters, digests, conferences, and websites) of a dozen leading professional associations within a Professional Association Partner Network. In light of new and emerging standards in the STEM disciplines, the Collaboratory is focusing its work on four salient and timely bodies of research: (a) STEM Practices, (b) Formative Assessment, (c) Cyberlearning, and (d) Learning as a Cross-Setting Phenomenon. Special emphasis is being placed on research and practice that focuses on the learning of children and youth from communities historically underrepresented in STEM fields.
DATE: -
TEAM MEMBERS: Bronwyn Bevan Joni Falk Philip Bell Bill Penuel Pamela Buffington Barbara Berns
resource project Media and Technology
The objective of this project is to extend the concept of crowdsourcing in citizen science to the interaction design of the organization as well as to data collection. Distributed technologies offer new opportunities for conducting scientific research on a larger scale than ever before by enabling distributed collaboration. Virtual organizations that use distributed technologies in scientific organizations have primarily focused on how dedicated, professional scientists collaborate and communicate. More recently a rapidly increasing number of citizen science virtual organizations are being formed. Citizen scientists participate in scientific endeavors and typically lack formal credentials, do not hold professional positions in scientific institutions, and bring diversity of knowledge and expertise to projects and challenges. They participate in scientific endeavors related to their personal scientific interests and create new challenges for the design of virtual organizations. In terms of intellectual merit, the project will make three specific contributions: a new interaction design for collecting biodiversity data within a nature park, a model for crowdsourcing the design of an social computing approach to citizen science, and an analysis of the impact of crowdsourcing the design on motivating participation in collecting biodiversity data. Interactive tabletop computers will be placed in two nature parks so that the design of the citizen science environment can be embedded in a park experience and engage the public in understanding more about their parks, in data collection, and develop a personal commitment to environmental sustainability issues. In terms of broader impacts, the project provides three types of impact: research training by including graduate students, broad public dissemination to enhance scientific understanding of biodiversity, and benefits to society through association with the Aspen Center for Environmental Studies (ACES) and Encyclopedia of Life (EOL).
DATE: -
TEAM MEMBERS: Mary Lou Maher Tom Yeh Jennifer Preece
resource research Media and Technology
In this memo, we present a first version of the conceptual framework funded by the John D. and Catherine T. Macarthur Foundation. Our goal is to provide clarity around issues of scale and spread, and to develop a tool that can inform strategic thinking by members of the DML (Digital Media and Learning) community and the broader field. At the heart or the conceptual framework is a typology of conceptions of scale. Our interviews and literature review suggest that there are fundamentally different ways of conceptualizing the goals or outcomes of scale. We identify four: adoption, replication
DATE:
TEAM MEMBERS: Cynthia Coburn Amy Catterson Jenni Higgs Katie Mertz Richard Morel
resource evaluation Media and Technology
This is a report of an evaluation of the content and design of the science components of the Education Development Center's TV411 program, conducted by Owen Consulting, Inc. In 2010, EDC received a grant from NSF to reconstruct the TV411 website, produce new science content, including videos and web lessons, improve user interactivity, and develop materials to support adult educators who work with the site's target population of low literacy adults. This report lays out the evaluation design, provides an overview of site web metrics, describes the registered user population discusses the ways
DATE:
TEAM MEMBERS: Education Development Center Eric Graig David Owen
resource research Media and Technology
Worldwide growth in use of mobile phones has fostered the emergence of mobile learning. Mobile technologies are used both in classrooms to support instruction (safe) and as tools that significantly change instructional activities, learner roles, and learning location (disruptive). Learners become less consumers of information and more collaborators, researchers, and publishers on-the-go (Stead, 2006). Scholarship in m-learning is scarce and lacks rigor (McNeal & van't Hooft, 2006). Even with increasing numbers of investigative studies there are still significant gaps in the literature
DATE:
TEAM MEMBERS: Tiffany Koszalka G.S. Ntloedibe-Kuswani
resource research Media and Technology
This article describes a series of demonstration projects that use multiscalar gigapixel image technology to iteratively design, test, and study how visitors learn to observe more scientifically in museums, online, and through museum-based programming. We consider how the particular affordances of systems like these can move science communication and learning from didactic approaches centered on one-way communication toward technology platforms that encourage shared observation, dialogue, and engagement.
DATE:
TEAM MEMBERS: University of Pittsburgh Marti Louw
resource research Media and Technology
This volume explores how technology-supported learning environments can incorporate physical activity and interactive experiences in formal and informal education. It presents cutting-edge research and design work on a new generation of "body-centric" technologies such as wearable body sensors, GPS tracking devices, interactive display surfaces, video game controller devices, and humanlike avatars. Contributors discuss how and why each of these technologies can be used in service of learning within K-12 classrooms and at home, in museums and online. Citing examples of empirical evidence and
DATE:
TEAM MEMBERS: Utah State University Victor Lee
resource project Media and Technology
Sustainable Nano is the a blog created and written by scientists at the Center for Sustainable Nanotechnology, a research center located primarily at universities in the midwest that seeks to advance technological innovations that are safe and sustainable by discovering molecular principles that govern nanoparticle-biological interactions, preparing a new and diverse generation of trans-disciplinary scientists, and engaging the general public.
DATE:
TEAM MEMBERS: Lee Bishop
resource project Media and Technology
Educators from K-12 and higher education are collaborating on a new school of the future projects involving humanoid robots and other forms of robots and student and teacher productivity tools. We are working in the areas of STEAM Plus. (science, technology, engineering, visual and performing arts, mathematics, computer languages and foreign languages) All team members will share their action research results through a traveling exhibition to all twelve public libraries in the city of Long Beach, California. Kids Talk Radio through its Backpack Science, Journalism, and Backpack Robotics programs will create video and audio podcasts of the action research and share findings over the Internet with schools, libraries and museums around the world.
DATE: -
TEAM MEMBERS: Super School Software Bob Barboza Walter Martinez