In the summer of 2003, a survey was carried out at the At-Bristol Science Centre (UK) to determine the effectiveness of the hands-on activities of "Explore". The section evaluated included 43 interactive experiences divided into two themes. The first, "Get Connected", consisted of examples of the latest digital technologies, such as a television studio, virtual volleyball, and radars. The second, "Curiosity Zone", was dedicated to natural phenomena and subdivided into three additional groups: "Natural Forces" which presented various forces of nature, "Focus on Light", which dealt with the
This report presents the findings of the summative evaluation of the Science Museum of Minnesota’s Big Back Yard (BBY), with a specific focus on Earthscapes Miniature Golf. Mary McEathron, Amy Grack, and Stacey Grimes, graduate students in the Evaluation Studies program at the University of Minnesota, carried out the evaluation during the summer of 2004. The purposes of the evaluation were to understand visitors’ experiences in the Big Back Yard and the quality of awareness or understanding acquired as a result of that experience. The evaluation was conducted to answer the following evaluation
Science museum staff face a constructivist dilemma as they design their public spaces: the exhibits should facilitate science learning, yet they also need to support a diverse visiting public in making their own personal choices about where to attend, what to do, and how to interpret their interactions. To be effective as teaching tools, exhibits need to be highly intrinsically motivating at every step of an interaction in order to sustain involvement by an audience who views their visit primarily as a leisure activity. Given these challenges, it is vital to support the design process with a
This article reports findings from a study of some of the museums most active in audience research to identify success factors crucial to effective audience research. The study focused on what makes audience research effective and when audience research can be considered effective. This article reports findings from eight case studies undertaken in Australia and New Zealand. Following an explanation of the research approach, this article outlines the principal criteria for audience research effectiveness found in the institutions studied and highlights the main success factors underlying their
This paper describes a 2002 study conducted by Steve Tokar that was the first of its kind to evaluate universal design practice among North American museums with hands-on science exhibits. Tokar investigated the following questions: (1) For which audiences do museum exhibit professionals think their exhibitions are accessible?; (2) What is the current level of institutional commitment to creating exhibits that are universally designed and accessible for visitors with disabilities?; (3) Which areas need improvement?; and (4) Where have we succeeded? Evaluation methodologies, key findings, and
DATE:
TEAM MEMBERS:
Steve TokarVisitor Studies Association
This paper is an introduction to the special issue of "Visitor Studies Today" dedicated to museum accessibility for persons with disabilities by guest editor Christine Reich, Senior Research/Evaluation Associate at the Museum of Science, Boston.
This paper discusses the "Scences de Silence/Scenes of Silence" exhibition designed to enable hearing people to gain access to the world of the deaf. This paper describes the exhibition and evaluation findings which examined the project's impact on visitors and deaf guides.
This award is for a Science and Technology Center devoted to the emerging area of nanobiotechnology that involves a close synthesis of nano-microfabrication and biological systems. The Nanobiotechnology Center (NBTC) features a highly interdisciplinary, close collaboration between life scientists, physical scientists, and engineers from Cornell University, Princeton University, Oregon Health Sciences University, and Wadsworth Center of the New York State Health Department. The integrating vision of the NBTC is that nanobiotechnology will be the genesis of new insights into the function of biological systems, and lead to the design of new classes of nano- and microfabricated devices and systems. Biological systems present a particular challenge in that the diversity of materials and chemical systems for biological applications far exceeds those for silicon-based technology in the integrated-circuit industry. New fabrication processes appropriate for biological materials will require a substantial expansion in knowledge about the interface between organic and inorganic systems. The ability to structure materials and pattern surface chemistry at small dimensions ranging from the molecular to cellular scale are the fundamental technologies on which the research of the NBTC is based. Nanofabrication can also be used to form new analytical probes for interrogating biological systems with unprecedented spatial resolution and sensitivity. Three unifying technology platforms that foster advances in materials, processes, and tools underlie and support the research programs of the NBTC: Molecules of nanobiotechnology; Novel methods of patterning surfaces for attachment of molecules and cells to substrates; and Sensors and devices for nanobiotechnology. Newly developed fabrication capabilities will also be available through the extensive resources of the Cornell Nanofabrication Facility, a site of the NSF National Nanofabrication Users Network. The NBTC will be an integrated part of the educational missions of the participating institutions. NBTC faculty will develop a new cornerstone graduate course in nanobiotechnology featuring nanofabrication with an emphasis on biological applications. Graduate students who enter the NBTC from a background in engineering or biology will cross-train in the other field by engaging in a significant level of complementary course work. Participation in the NBTC will prepare them with the disciplinary depth and cross-disciplinary understanding to become next generation leaders in this emerging field. An undergraduate research experience program with a strong mentoring structure will be established, with emphasis on recruiting women and underrepresented minorities into the program. Educational outreach activities are planned to stimulate the interest of students of all ages. One such activity partnered with the Science center in Ithaca is a traveling exhibition for museum showings on the subject of nano scale size. National and federal laboratories and industrial and other partners will participate in various aspects of the NBTC such as by hosting interns, attendance at symposia and scientist exchanges. Partnering with the industrial affiliates will be emphasized to enhance knowledge transfer and student and postdoctoral training. This specific STC award is managed by the Directorate for Engineering in coordination with the Directorates for Biological Sciences, Mathematical and Physical Sciences, and Education and Human Resources.
This project was an early example of STEAM (Science, Technology, Engineering, Art, Math) and was produced for the 2004 BLD Studios art exhibition, Time Machines, in Columbus, OH. This project included a chair and a desk made of drawers, on top of which was a audio/video work station where visitors sat and interacted with the technology by using the headphones and listening to one tape deck for instructions and then listening to music on the other while watching the TV screen with special HyperSpeks(tm). There was also a panel of photos above the TV designed to simulate time travel. The instructions explained the purpose of the exhibit and how to use the TV to tune into various channels to pick-up a variety of video static on empty UHF frequencies. The music was designed to put the visitor into a certain frame of mind. It was futuristic sounding and created using DEMI sampling, a proprietary sampling technique also created by Marshall Barnes. The intent was to set the mood. Training Session was supposed to simulate training prospective transdimensional travelers in the cognitive exercises required to deal with the psychological rigors of time/parallel universe travel. The HyperSpeks(tm) allowed the visitors to search for various shapes in the TV static on a number of selcted channels which would resemble such cosmological constructs as black holes and wormholes. The static was live and not prerecorded and so the interaction on all levels was live and in real time. Visitors were to write their observations down on paper which was provided via a note pad and pen at the exhibit. In this way, a record of their experiences existed for subsequent visitors to review. The visitors were also told to view the photo panel, which consisted of pictures taken in 1977, but not developed until 2004. As a result, the pictures were somewhat faded and all tinted pink, however, when the visitors viewed them with the HyperSpeks(tm) they appeared not only normal color, but almost as if the scenes they depicted were views outside a window. Thus, the visitor was able to travel optically back in time and see the images the way they looked when they were originally photographed.
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE:
-
TEAM MEMBERS:
Efi Foufoula-GeorgiouChristopher PaolaGary Parker
The California Academy of Sciences will develop, evaluate and disseminate exhibits and programs designed to communicate to public audiences the results of research including a biotic inventory of the amphibians and reptiles of Myanmar. Using innovative trading cards for kids, updates to current research exhibits, a poster highlighting research, a pocket guide to venomous snakes of Myanmar and a posting of research -related materials on the CAS website, the project will inform the public about biotic inventory research and conservation in Myanmar. Designed specifically for target audiences of children and adults, the exhibits and programs will serve several hundred thousand CAS visitors annually.
Extensive research of the exhibit, Kachemak Bay, Alaska: An Exploration of People and Place shows it to be popular and effective with visitors on every communication and affective goal set forth in the Exhibit Master Plan. Research also finds that Community Collaborators who helped to create exhibit elements found the experience deeply meaningful and satisfying, meeting every desired cognitive, affective and behavioral outcome established for the collaboration programs. Pre- and post-test surveys of the exhibit involved nearly 600 visitors to the Pratt Museum. In most studies, Travelers and