Sense-making with data through the process of visualization—recognizing and constructing meaning with these data—has been of interest to learning researchers for many years. Results of a variety of data visualization projects in museums and science centers suggest that visitors have a rudimentary understanding of and ability to interpret the data that appear in even simple data visualizations. This project supports the need for data visualization experiences to be appealing, accommodate short and long-term exploration, and address a range of visitors’ prior knowledge. Front-end evaluation
As the world is increasingly dependent upon computing and computational processes associated with data analysis, it is essential to gain a better understanding of the visualization technologies that are used to make meaning of massive scientific data. It is also essential that the infrastructure, the very means by which technologies are developed for improving the public's engagement in science itself, be better understood. Thus, this AISL Innovations in Development project will address the critical need for the public to learn how to interpret and understand highly complex and visualized scientific data. The project will design, develop and study a new technology platform, xMacroscope, as a learning tool that will allow visitors at the Science Museum of Minnesota and the Center of Science and Industry, to create, view, understand, and interact with different data sets using diverse visualization types. The xMacroscope will support rapid research prototyping of public experiences at selected exhibits, such as collecting data on a runner's speed and height and the visualized representation of such data. The xMacroscope will provide research opportunities for exhibit designers, education researchers, and learning scientists to study diverse audiences at science centers in order to understand how learning about data through the xMacroscope tool may inform definitions of data literacy. The research will advance the state of the art in visualization technology, which will have broad implications for teaching and learning of scientific data in both informal and formal learning environments. The project will lead to better understanding by science centers on how to present data to the public more effectively through visualizations that are based upon massive amounts of data. Technology results and research findings will be disseminated broadly through professional publications and presentations at science, education, and technology conferences. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project is driven by the assumption that in the digital information age, being able to create and interpret data visualizations is an important literacy for the public. The research will seek to define, measure, and advance data visualization literacy. The project will engage the public in using the xMacrocope at the Science Museum of Minnesota and at the Center of Science and Industry's (COSI) science museum and research center in Columbus, Ohio. In both museum settings the public will interact with different datasets and diverse types of visualizations. Using the xMacroscope platform, personal attributes and capabilities will be measured and personalized data visualizations will be constructed. Existing theories of learning (constructivist and constructionist) will be extended to capture the learning and use of data visualization literacy. In addition, the project team will conduct a meta-review related to different types of literacy and will produce a definition with performance measures to assess data visualization literacy - currently broadly defined in the project as the ability to read, understand, and create data visualizations. The research has potential for significant impact in the field of science and technology education and education research on visual learning. It will further our understanding of the nature of data visualization literacy learning and define opportunities for visualizing data in ways that are both personally and culturally meaningful. The project expects to advance the understanding of the role of personalization in the learning process using iterative design-based research methodologies to advance both theory and practice in informal learning settings. An iterative design process will be applied for addressing the research questions by correlating visualizations to individual actions and contributions, exploring meaning-making studies of visualization construction, and testing the xMacroscope under various conditions of crowdedness and busyness in a museum context. The evaluation plan is based upon a logic model and the evaluation will iteratively inform the direction, process, and productivity of the project.
In December the Science Museum will open Mathematics: The Winton Gallery. The new gallery tells mathematical stories in relation to a broad spectrum of fundamental human concerns. One of the key exhibits is a newly acquired machine for modelling storm surges in the North Sea. Designed by Japanese engineer Shizuo Ishiguro, the object offers a way to explore the far-reaching impact and relevance of mathematical work.
Assuming that scientific development and artistic research are genetically similar, this article shows the common need of knowledge of art and science, their dialectical and multidirectional relations and the unstable boundaries between them. The fractal art has assimilated the cognitive and perceptive changes in the realm of non-euclidean geometries and has become a precise instrument of "epistemological observation". Artistic practices materialize and communicate the laws of science, while scientific revolutions are in actual facts metaphorical revolutions.
The Exploratorium explainer program is not only important to the young people involved, but is an integral part of the museum culture. This initiative that started to help the youth of our community has blossomed into a program that has been very helpful to the science centre. In fact, the institution would not be complete without the fresh energy of the explainers. They help the Exploratorium to continue to give the real pear to its public.
This essay is an account of the making of England and her Soldiers (1859) by Harriet Martineau and Florence Nightingale. The book is a literary account of the Crimean War, written by Martineau and based on Nightingale’s statistical studies of mortality during the conflict. Nightingale was passionate about statistics and healthcare. Whilst working as a nurse in the Crimea, she witnessed thousands of soldiers die of infectious diseases that might have been prevented with proper sanitation. After the war, she launched a campaign to convince the British government to make permanent reforms to
Many museum professionals believe that immersive exhibits—those that surround visitors—provide more attractive, engaging and effective learning experiences than tabletop exhibits. We investigated this claim by comparing visitors’ experiences of the two exhibit types, using pairs of exhibits that differed in scale (immersive vs. tabletop), but shared the same content and similar visitor activity. We randomly selected, videotaped, interviewed, and sent follow-up surveys to sixty families who experienced immersive exhibits and sixty families who experienced tabletop exhibits. We found that each
This pathways project will study how audiences in public spaces, in this case those in a museum setting, relate to and make sense of large data displays. The project is preliminary to development of a traveling, hands-on exhibition enabling users to create and utilize representations of big data displays such as maps and charts. As the test case, the project will use science maps that provide an overview of science generally and specific areas of STEM, charting and exploring the history and future of science and technology. The data collection portion of the project will take place at the New York Hall of Science, the Marian Koshland Science Museum, COSI in Columbus, Ohio, and WonderLab Museum in Bloomington, Indiana. The project will create a foundation for the design of museum exhibits and educational programs that teach museum visitors how to explore, engage and make better sense of big data. The project is potentially transformative because big data is becoming ubiquitous and making sense out of large data displays is necessary in order to understand big data sets.
This multiplatform media and science center project is designed to engage audiences in humanity's deepest questions like the nature of love, reality, time and death in both scientific and humanistic terms. Project deliverables include 5 hour-long radio programs for broadcast on NPR stations, public events/museum exhibits at the Exploratorium in San Francisco, kiosks in venues throughout the city, and a social media engagement campaign. The audience of the project is large and diverse using mass media and the internet. But the project will specifically target young, online, and minority audiences using various strategies. The project is designed to help a diverse audience understand the impact of new scientific developments as well as the basic science, technology, engineering and math needed to be responsible, informed citizens. Innovative elements of the project include the unique format of the radio programs that explore complex topics in an engaging and compelling way, the visitor engagement strategy at the Exploratorium, and the social media strategy that reaches niche audiences who might never listen to the radio broadcasts, but find the podcasts and blogs engaging. The Exploratorium will be opening a new building in 2013 and will include exhibits and programs that are testing grounds for this project. This is a new model that aligns the radio content with exhibitions, social media, and in person events at the Exploratorium, providing a unique holistic approach. The project is designed to inspire people to think and talk about science and want to find out more. The evaluation will measure the impacts on the targeted audiences reached by each of the key delivery methods. Data will be collected using focus groups; intercept interviews with people in public places, and longitudinal panels. The focus will be on 5 targeted audiences (young adults, families with children, non-NPR listeners, underrepresented minorities, and adults without college experience). This comprehensive evaluation will likely contribute important knowledge to the field based on this multiple-platform collaborative model.
DATE:
-
TEAM MEMBERS:
Barietta Scott
resourceresearchProfessional Development, Conferences, and Networks
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. It describes a project designed to increase informal learning opportunities for blind youth in STEM.
DATE:
TEAM MEMBERS:
National Federation of the BlindMark Riccobono
This research investigated gender equitable exhibit development by enhancing a geometry exhibit with several female-friendly design features and analyzing video data to determine the effects on girls' engagement and social interactions with their caregivers. The findings suggest that incorporating several female-friendly design features leads to significantly higher engagement for girls (evidenced by greater attraction and time spent). This study also looked for any unanticipated negative effects for boys after incorporating the female-friendly design features.
Stennis Space Center (SSC) Office of Education and Visitors Center provided relevant education activities and experiences for teachers, students, and the general public. Activities included partnerships with INFINITY Science Center, 4-H of Mississippi, the Boys & Girls Club of America, development and delivery of educator professional development workshops that meet national curriculum standards; inquiry-based activities that emphasized the International Space Station, robotics, aeronautics, and propulsion testing; and development and installation of an interactive exhibit at the Infinity Science Center. The opening of the Infinity Science Center at Stennis Space Center in April 2012 allowed a new opportunity for SSC to partner and expand NASA’s outreach. A commercial-grade playground was professionally installed at the Infinity Science Center, along with OSHA-approved safety matting. The goal of the project was to utilize a commercially available playground and add graphics and quiz-based activities modifications enabling young visitors to INFINITY at NASA Stennis Space Center, the official visitor center for Stennis Space Center, to have an interactive, yet educational, experience.