We present the assets that collaboration across a land grant university brought to the table, and the Winterberry Citizen Science program design elements we have developed to engage our 1080+ volunteer berry citizen scientists ages three through elder across urban and rural, Indigenous and non-Indigenous, and formal and informal learning settings.
DATE:
TEAM MEMBERS:
Katie SpellmanJasmine ShawChristine VillanoChrista MulderElena SparrowDouglas Cost
In this study, we examined how two different CCS models, a contributory design and a co-created design, influenced science self-efficacy and science interest among youth CCS participants.
DATE:
TEAM MEMBERS:
Sarah ClementKatie SpellmanLaura OxtobyKelly KealyKarin BodonyElena SparrowChristopher Arp
We examined an approach to reaching audiences who may not ordinarily engage with science. Termed Guerilla Science, this approach blends elements of access, by removing barriers to participation by embedding science into unexpected places, with those of inclusion, by designing activities that speak to the learning identities of participants.
The ICBOs (Independent Community-based Organizations), a group of fifteen community representatives from communities historically excluded from the sciences, share results from eight years of community-led de-colonial participatory action research. We wrote this white paper to share our findings and recommendations with funders like the National Science Foundation. These findings, recently published in BioScience (https://doi.org/10.1093/biosci/biac001), along with preliminary results from our current research, and our lived experiences point towards a critical need to change the existing
DATE:
TEAM MEMBERS:
Karen PurcellBobby WilsonMakeda CheatomJohn AnnoniTanya Schuh
This poster was presented at the 2021 NSF AISL Awardee Meeting. The Guerilla Science project conducted two studies: one at the Oregon Eclipse Festival, a large multi-day residential music and arts festival, and one during the Figment festival, a cultural and family-oriented free festival on Governor’sIsland (NewYorkCity). We used a multi-method research design: trained data collectors conducted intercept interviews of various length; short written feedback forms were made available post events; and we conducted structured observations of events.We compared Guerilla Science audiences with
The AI behind Virtual Humans Exhibit aims to communicate to the public about the capabilities and impact of artificial intelligence (AI) through AI technologies used in Virtual Humans including facial recognition and natural language processing. AI has and will continue to profoundly impact society in the United States and around the globe. It is important to prepare the nation’s youth and the future workforce with fundamental knowledge of AI. Informal settings, such as museums, offer open and flexible opportunities in helping youth and the general public learn about AI. Virtual Humans provide an ideal vehicle to illustrate many fields of AI, as AI is arguably the science of building intelligence that thinks and acts like humans. Led by a multidisciplinary team of researchers with expertise in AI, learning design, and assessment from the Institute for Creative Technologies at University of Southern California and the Lawrence Hall of Science at University of California, Berkeley, this project will develop a Virtual Human exhibit to engage visitors through structured conversations with a Virtual Human, while showcasing how AI drives the Virtual Human’s behavior behind the scenes. The exhibit will include collaborative learning experiences for visitors such as parent-child, siblings and peers to explore what AI is and is not, what AI is and is not capable of, and what impact it will have on their lives.
The project will investigate three research questions: (1) How can a museum exhibit be designed to engage visitor dyads in collaborative learning about AI? (2) How can complex AI concepts underlying the Virtual Human be communicated in a way that is understandable by the general public? And (3) How does and to what extent the Virtual Human exhibit increase knowledge and reduce misconceptions about AI?
The project leverages existing conversational Virtual Human technology developed through decades of collaborative research in AI, including machine vision, natural language processing, automated reasoning, character animation, and machine learning. Set in the informal setting of a museum, the exhibit will be designed following evidence-based research in Computer Supported Collaborative Learning. The project team will use a mixed methods design, drawing on design-based research methodologies and experimental studies. The research team will conduct analysis of visitor observations and interviews for iterative formative improvement. Randomized experimental studies will be conducted in both lab and naturalistic environments to gauge visitor knowledge about AI. Quasi-experimental analyses will be performed to study the relationship between engagement with exhibit features and AI knowledge. The project will produce an interactive exhibit with a Virtual Human installed at the Lawrence Hall of Science and other participating museums, and instruments to measure AI learning. The project will also produce a website where visitors can experience parts of the exhibit online and continue more in-depth learning about AI and the Virtual Human technology. The project holds the potential for producing theoretical and practical advances in helping the general public develop an understanding of AI capability and ethics, advancing knowledge in the process through which young learners develop knowledge about AI, and formulating design principles for creating collaborative learning experiences in informal settings. The results will be disseminated through conference presentations, scholarly publications, and social media. The Virtual Human exhibit will be designed for dissemination and made available for installations at informal science education communities.
The nature of the learning that occurs with real versus replicated objects and environments is an important topic for museums and science centers. Our comparative, exploratory study addressed this area through an investigation of family visits to two different settings: an operating permafrost research tunnel, and a replica of this permafrost tunnel at a science center. We conducted and analyzed family interviews, grounding our work in the Contextual Model of Learning and ideas about sensory components of learning. We found significant differences between the real and replicated environments
The primary objective of this study is to document how people learn the science of the COVID-19 pandemic in real time, how they activate this scientific knowledge towards informed decision making, and how these processes change over time. This study is intended to produce additional insights on how such learning is shaped by equity concerns and contextual factors. For example, researchers will document how the ways in which people learn the science of COVID-19 are mediated by the sources of information they have access to and leverage, as well as what supports them in doing so. The research will further document how people leverage their understandings of COVID-19, alongside other forms of knowledge and concerns in their decision-making. This study may serve a crucial role in aiding the public understanding of where structural points of informational failure might occur. It may also reveal where and how the public engages or resists community action strategies to mitigate spread and suffering through when, how and why they gather, share, and make sense of scientific data. This RAPID was submitted in response to the NSF Dear Colleague letter related to the COVID-19 pandemic. This award is made by the AISL and ECR programs in the Division of Research on Learning, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act.
This research will draw upon a conceptual framework of consequential learning and a methodological framework of narrative inquiry. Sixty participants in Lansing, Michigan and Seattle, Washington will participate over the course of one year in cyclical interviews, focus group conversations and experience sampling approaches. Documents and resources named and used by the participants in their learning will be collected and analyzed. Attention will be paid to science learning in the following areas as the primary focus: a) the science of SARS-CoV-2 and the relationship between virus and disease, b) viral transmission, and c) origination, replication and spread. A key focus will also be how people use scientific data and evidence-based explanations when developing understandings and making decisions with respect to the pandemic. This research is urgent and timely because the COVID-19 pandemic is projected to occur in multiple waves over approximately 18 months. Insights may produce basic understanding about rapid science learning, policy strategies, school-based practices and resources for use within current and future waves. Socioscientific crises differentially impact people, with effects felt more significantly by vulnerable people. Thus, this study will address the urgent call for investigation into factors and experiences of low-income individuals and families who are trying to educate themselves on continually changing data during an international health crisis.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
A report following the 2016 Environmental Health Summit recommended engaging citizens in creating their own knowledge and solutions, thus ensuring that their concerns are adequately addressed and promoting sustainability of community projects. Indeed, citizen science has the potential to initiate a cascade of events with a positive ripple effect that includes a more diverse future STEM and biomedical workforce. This SEPA proposal involves the establishment of WE ENGAGE – an informal, citizen science-based, environmental health experiential learning program designed in partnership with and for under resourced communities struggling with health and environmental health challenges. Its purpose is to actively engage and build the citizen science capacity of citizens living in a single cluster of three contiguous under resourced, minority Cincinnati neighborhoods where generational challenges continue to plague residents despite the presence of established academic-community partnerships. Our hypothesis is that community-informed, experiential learning opportunities outside of the classroom that are structured, multi-generational, and story-based will encourage a) the active asking, discussion about, and answering of relevant complex health and environmental questions so that individuals and communities can plan action steps to make better health choices and pursue healthier environments, and b) greater interest and confidence in pursuing formal biomedical/STEM education and STEM careers. Our program has three specific aims: 1) We will co-create tailored story- based (graphic novel style) STEM education materials with a community advisory board and offer informal STEM education and research training to our target communities; 2) we will facilitate the application of scientific inquiry skills to improve health via community-led health fairs that use an innovative electronic health passport platform to collect data and through facilitated community discussions of health fair data to generate motivating stories to share; and 3) we will facilitate the application of scientific inquiry skills to foster community pride and activism in promoting healthier/safer built environments via walking environmental assessments. As in aim 2, facilitated discussions will be held to spur future community based participatory research studies and interventions. Critical to our success is the concept of storytelling. Storytelling is a foundation of the human experience. A key purpose of storytelling is not just understanding the world, but positively transforming it. It is a common language. Bringing together STEM concepts in the form of a story increases their appeal and meaning. Later, the very process of community data collection gives individuals a voice. In a data story, hundreds to millions of voices can be distilled into a single narrative that can help community members probe important underlying associations and get to the root causes of complicated health issues relevant to their communities. Through place based, understandable, motivating data stories, the community’s collective voice is clearer—leading to relevant and viable actions that can be decided and taken together. From preventing chronic disease, to nurturing healthier environments, to encouraging STEM education — stories have unlimited potential.
Public Health Relevance Statement:
Narrative WE ENGAGE is an informal citizen science-based, experiential learning program designed in partnership with and for middle schoolers to adults living in under resourced minority communities. Using the power of data collection and storytelling, its purpose is to actively engage citizens in STEM/research education and training to encourage a more diverse future workforce and to sustainably build local capacity to ask and answer complex health and environmental questions relevant to their communities. Further, by engaging citizens and giving them a more equitable stake in the research process, they are better able to discover their own solutions.
DATE:
-
TEAM MEMBERS:
Melinda Sue ButschkovacicSusan Ann Hershberger
NASA's Universe of Learning provides resources and experiences that enable diverse audiences to explore fundamental questions in astronomy, experience how science is done, and discover the universe for themselves. Using its direct connection to science and science experts, NASA's Universe of Learning creates and delivers timely and authentic resources and experiences for youth, families, and lifelong learners. The goal is to strengthen science learning and literacy, and to enable learners to discover the universe for themselves in innovative, interactive ways that meet today's 21st century needs. The program includes astronomical data tools, multimedia resources, exhibits and community programs, and professional learning experiences for informal educators. It is developed through a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, the Jet Propulsion Laboratory, the Smithsonian Astrophysical Observatory, and Sonoma State University.
DATE:
-
TEAM MEMBERS:
Denise SmithGordon SquiresKathy LestitionAnya BifernoLynn Cominsky