As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.
This RAPID was submitted in response to the NSF Dear Colleague letter related to the COVID-19 pandemic. This award is made by the AISL program in the Division of Research on Learning, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. The project will develop and research an integrated package of high-quality, widely accessible media and other outreach materials designed to engage middle school youth, educators, and libraries in learning about viruses in relation to COVID-19. There is an immediate need to provide youth with accurate, engaging, and accessible materials to help them understand the basic biology underlying the COVID-19 pandemic, including the routes of COVID-19 transmission and mechanisms to prevent its spread. This is particularly important for those without science backgrounds or interests so that the rumors, hearsay, and gossip circulating among youth can be replaced with research-based information. Since 2007, the project team and partners have focused on developing and studying new ways of educating youth and the public about biology, virology, and infectious disease. The project will develop a web-accessible package of customizable graphics, illustrated stories, and essays--all of which can be easily incorporated into free-choice and directed on-line learning as well standards-based lesson plans for Grades 6-8. These resources will be disseminated broadly and at no cost to youth and educators of all kinds, including schools, libraries, museums, and other established networks for formal and informal science education. The project web package will be linked to multiple websites that serve as important educational resources on science and virology for youth, the general public, and educators. A prominent university press will publish and promote the illustrated stories and support distribution of 7,000 free copies.
The project will conduct research examining how richly-illustrated science narratives impact youth understanding of and curiosity about science. The research will help develop the foundation for better understanding how to educate youth about COVID-19 (and future pandemics) while generating new knowledge about effective methods for public science outreach during a major unanticipated natural event. For formative evaluation, the project will use an innovative rapid response feedback method. Youth will be invited to provide timely, specific comments on the serialized stories through a curated portal. As new excerpts are related online, different questions will be posed to youth who are selected because of specific characteristics (e.g., low or high initial science interest). These data will guide story development in real time and provide a mechanism to gauge the story appeal, comprehensibility, and initial impacts. The project will address two research questions: (1) How effective are illustrated stories in having positive impacts among participants on COVID-19 knowledge, science identity, attitudes, and interest in science careers?; and (2) How do story lines and characters have differential impacts on virus knowledge, epidemiology, and youth attitudes towards science and science careers? To conduct this research, the project will conduct online surveys using adapted items from prior research conducted by the project team. Additional items will assess COVID-19 knowledge, attitudes, personal experiences with the virus, well-being, and exposure to public health messaging about the virus. Research findings will be shared widely to inform the field about new ways delivering science education content during the advent of rapidly evolving global and educational challenges.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Judy DiamondJulia McQuillanPatricia Wonch HillElizabeth VanWormer
The Brooklyn Botanic Garden (BBG) and Brooklyn Academy of Science and the Environment (BASE) contracted RK&A to conduct an evaluation of their partnership’s progress and outcomes over three years. The goal of the summative evaluation is to explore students, families, and teachers’ perceptions of and relationship to BBG and the BBG-BASE partnership. The evaluation also explored attitudes and understandings of how to engage in nature exploration, scientific inquiry, and environmental stewardship in a meaningful way.
How did we approach this study?
RK&A developed questionnaires to be
Science Hunters is an outreach project which employs the computer game Minecraft to engage children with scientific learning and research through school visits, events, and extracurricular clubs. We principally target children who may experience barriers to accessing Higher Education, including low socioeconomic status, being the first in their family to attend university, and disability (including Special Educational Needs). The Minecraft platform encourages teamwork and makes science learning accessible and entertaining for children, irrespective of background. We employ a flexible approach
DATE:
TEAM MEMBERS:
Laura HobbsCarly StevensJackie HartleyCalum Hartley
The Farrell Fellows Summer Internship program consists of teen educators leading science, technology, engineering and math (STEM) activities for children at libraries and park locations across Chicago. The goal of this study was to learn more about the families who attend the sessions and to also look for evidence of learning and how that may be related to the moods and attitudes of the teen educators. Data was collected through observations of the sessions, pre- and post-session surveys of 26 teen educators, and 90 surveys of the parents of participating children. Field notes were coded using
The purpose of this paper is to provide a better understanding of Maine’s capability to promote 5th-12th graders’ engagement and achievement in STEM during out-of-school hours. The paper will provide a background for the design conference task of constructing “STEM intensives” that make optimal use of Maine’s resources and connect these resources with students in ways that make sense.
This paper describes innovative ways of bringing mathematical learning into community venues in rural settings. We selected highly engaging mathematical activities, adapted them for middle school youth and their families, and brought them to the “locavore” contexts of Farmers Markets and community agricultural fairs. “STEM Guides”—community people hired to connect youth with local STEM resources—set up math-oriented booths at local Farmers Markets and fairs. They enlisted visitors in weighing produce, comparing weights of typical fruits/vegetables to record-weighing produce, and composing
In this article we describe a model designed for rural settings that uses community-based “STEM Guides” as human brokers to engage isolated 10- to 18-year-old youth in STEM. The STEM Guides connect youth with opportunities that already exist in their communities, including after-school programs, clubs, camps, library activities, special events, contests, and competitions. STEM Guides also introduce youth and their families to virtual opportunities, such as citizen science monitoring, and statewide experiences, such as the Maine State Science Fair.
DATE:
TEAM MEMBERS:
Jan MokrosJennifer AtkinsonSue AllenAlyson SaundersKate Kastelein
This article describes the research and development of an NSF-funded, five-year experimental program to strengthen informal (out-of-school) STEM learning by youth in five rural communities. The central component of the model was a cadre of community members known as ‘STEM Guides’ who were hired to work as brokers between youth and the STEM learning resources potentially available to them. These STEM Guides were respected adults with credible connections to youth, flexible schedules, the ability to travel within the community, and enthusiasm for identifying local STEM resources. The Guides were
This document is the final summative evaluation report written by EDC, the external evaluator of the STEM Guides project. The report concludes that the project was highly ambitious, with many dynamic and evolving pieces. It was deemed successful as a model of brokering connections between students aged 10-18 and STEM resources and opportunities in rural Maine communities. The STEM Guides program contributed to the increase in STEM awareness within each community, as well as connecting youth with interesting and relevant STEM experiences.
Natural disasters are increasing at a rapid rate, with the Centre for Research on the Epidemiology of Disasters reporting that climate-related disasters occurred more than twice as frequently, on average, from 2000 to 2015 in comparison to the 1980s. Disaster education, on the other hand, is sparse and unsystematic. The goal of our work was to develop brief and impactful educational interventions, accessible to teens throughout the country, and that focused on using technology to confront natural disasters. We did this through the Teen Science Café Network, a group that sponsors out-of-school
The National Federation of the Blind (NFB), in partnership with scholars from Utah State University and educators from the Science Museum of Minnesota (SMM), has developed the Spatial Ability and Blind Engineering Research (SABER) project to assess and improve the spatial ability of blind teens in order to broaden their participation in STEM fields. The goals of the project include:
Contribute to the knowledge base of effective practices regarding informal STEM education for the blind, particularly relating to the development of spatial reasoning abilities.
Educate families, blind
This long-term follow-up study utilized mixed method design to elicit information from the previous alumni cohorts over the past ten years. Extensive qualitative analysis supports quantitative findings across five intended program outcomes (content; science identity, science communication, 21st century skills and positive youth development; and networking. It also documents additional non-specifically targeted outcomes (e.g., parenting and community involvement); influence of specific program components; and visions for future alumni programming. Qualitative data derive from two sources -