Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data
DATE:
TEAM MEMBERS:
Remy DouHeidi CianZahra HazariPhilip SadlerGerhard Sonnert
The project team published a research synopsis article with Futurum Science Careers in Feb 2023 called “How Can Place Attachment Improve Scientific Literacy?”
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase student motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by designing, implementing, and testing an afterschool internship program that will engage older youth in work-based learning experiences in in STEM fields. The new model program will link the resources and learning approaches of the Global Learning and Observations to Benefit the Environment (GLOBE) program to career academies where youth from populations underrepresented in STEM fields will gain direct experiences in data collection and analysis through student-led investigations in the geosciences and environmental studies. Two key outcomes of this project will be: (a) Development of a replicable model of an afterschool STEM internship program for informal STEM learning environments and schools across the nation, and (b) Development of a set of measurement tools and approaches that can assess and promote understanding regarding how youth think and feel about science and their possible future roles in science careers. Participating youth will master scientific practices and become immersed in science culture through opportunities to develop research projects, interact with scientists, and collaborate with fellow student-researchers. In the process, they will develop collaboration and communication skills, and gain an increased sense of identity and agency in science fields. They will also learn new strategies to attain their career goals.
In developing and testing the new model of an afterschool program focusing on STEM careers, the project will draw on both existing and emerging knowledge from three areas of inquiry: informal STEM learning, youth development, and work-based learning. The project will bring together theory related to work-based learning and apprenticeship to knowledge about informal STEM learning and youth development, addressing the needs of older youth as they transition to adulthood. The program will also explore the use of measurement tools that address workforce-related student learning goals in addition to social-emotional learning and STEM learning goals, adapting existing tools and developing new tools as needed. The result will be a replicable model for an afterschool, career-focused internship that facilitates STEM learning and identity, employing youth development principles, such as experiential learning, peer collaboration, adult mentoring, and meaningful contributions to the world beyond school. The project will use a mixed-methods approach to investigate four research questions: (1) What aspects of the program are most important for promoting the development of scientific practices, socio-emotional learning, and career skills? (2) How can afterschool informal science learning be designed to address the perceptions and needs of diverse groups, especially those from populations underrepresented in STEM? (3) How do youth make gains in developing facility with STEM practices, key social-emotional outcomes needed in work and civic life, and career development knowledge? And (4) How do we accurately measure development of scientific practices, socio-emotional learning and career skills? The project will develop pretest and posttest self-report measures to gauge program influence on social-emotional outcomes and career-related outcomes, and performance-based assessments and rubrics will be used to assess culminating science projects. Other factors contributing to the success of the new model will be examined through analysis of coach instructional logs, surveys, and questions, as well as participant observations, interviews, and focus groups. Project participants will be youth of ages 14-18 recruited from ten inner-city schools having large populations of students from groups underrepresented in STEM fields. Participants will meet in teams of approximately 14 interns for a total of 2.5 hours per week for 32 weeks. Each team will also meet an additional 4-6 times for weekend or overnight outings associated with their study sites.
DATE:
-
TEAM MEMBERS:
Manuel AlonsoCathy RingstaffSvetlana Darche
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.
In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).
Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
The Museum of Science and Industry, Chicago (MSI) will develop museum-based education resources to engage high school age youth in the exploration of climate literacy and Earth systems science through its Teen ACES (Teen Advocates for Community and Environmental Sustainability) project. As the future leaders who will make decisions about the issues they face in their communities, youth participants will be positioned to act as advocates for establishing resilient communities in the Midwest. The project will utilize a variety of resources, including NOAA Science On a Sphere® (SOS) technology and datasets, Great Lakes and local climate assets from the Midwest Regional Climate Center and Illinois-Indiana Sea Grant, and existing local planning guides to develop museum-based youth programming. Teens will explore environmental hazards including severe weather events and temperature extremes, and consider the impact of the Great Lakes on regional climate. The Chicago Metropolitan Agency for Planning, Resilient Chicago, the Institute of Environmental Sustainability at Loyola University Chicago, and the South Metropolitan Higher Education Consortium will advise on the project to support the integration of municipal resiliency plans and their related adaptation and mitigation measures into the program. Teen participants will share their learning with the Chicago community through interactions with public visitors in the Museum, programs at Chicago Public Library branches, and MSI’s teen science program broadcast on Chicago’s public access TV station. Teen facilitated experiences will be tailored for SOS® experiences at MSI. The project will revise content for use in 100 after-school science clubs for students from diverse communities across the Chicago area. Further dissemination to three regional science center partners equipped with SOS® technology (Boonshoft Museum of Discovery in Dayton, Ohio; Science Central in Fort Wayne, Indiana; and Hawthorn Hollow in Kenosha, Wisconsin) will build a foundation of knowledge and resources to adapt materials to meet the needs of their communities and consider how their vulnerabilities and resiliency plans may differ from Chicago.
This is the final evaluation report on the Laurel Clark Earth Camp Experience, a multi-component program to incorporate NASA satellite data into summer field programs for teens, environmental and water education for teachers, environmental after-school clubs and Earth Science exhibits at the Arizona- Sonora Desert Museum.
Youth participants in an informal after school science program created a multimodal digital video public service announcement video. This paper considers the counterstories that emerge within the video and during the making of the video that challenge existing definitions of science literacy. The investigation suggests youth engage in expansive learning where vertical knowledge and horizontal knowledge inform their actions toward community based energy issues. Vertical knowledge describes the scientific knowledge youth engage while horizontal knowledge refers to the locally situated knowledge
Pipeline for Remote Sensing Education and Application (PRSEA), will increase awareness, knowledge and understanding of remote sensing technologies and associated disciplines, and their relevance to NASA, through a combination of activities that build a “pipeline” to STEM and remote sensing careers, for a continuum of audiences from third grade through adulthood. This program will be led by Pacific Science Center. The first objective is to engage 50 teens from groups underrepresented in STEM fields in a four-year career ladder program; participants will increase knowledge and understanding of remote sensing as well as educational pathways that lead to careers in remote sensing fields at NASA and other relevant organizations. The second objective is to serve 2,000 children in grades 3-5, in a remote sensing-based out-of school time outreach program that will increase the participant’s content knowledge of remote sensing concepts and applications and awareness and interest in remote sensing disciplines. PRSEA’s third objective is to engage 180 youth, grades 6-8, in remote sensing-themed summer intensive programs through which youth will increase knowledge of remote sensing concepts and applications and increase awareness and interest in educational and career pathways associated with remote sensing and NASA’s role in this field. The final objective is to engage 10,000 visitors of all ages with a remote sensing-themed Discovery Cart on Pacific Science Center’s exhibit floor. By engaging in cart activities, we anticipate visitors will increase their level of awareness and interest in the topic of remote sensing and NASA’s role in contributing to this field.
Youth Action Crews map the youth development programs and places in their neighborhoods in order to raise public awareness of the opportunities—and of where such opportunities don’t exist.
Funded jointly by the Institute of Museum and Library Services (IMLS) and the MacArthur Foundation, in partnership with the and Association of Science-Technology Centers (ASTC) and Urban Libraries Council (ULC), Learning Labs in Libraries and Museums supports the planning and design of 24 learning labs in libraries and museums nationwide. The inaugural cohort of 12 sites ran from January 2012 to June 2013, and a second cohort of 12 additional sites began in January 2013 and will extend through June 2014. In addition to the primary awardees, most grants included additional institutional partners, resulting in a rich community including over 100 professionals from approximately 50 participating organizations (libraries, museums, universities, and community-based organizations). The labs are intended to engage middle- and high-school youth in mentor-led, interest-based, youth-centered, collaborative learning using digital and traditional media. Inspired by YOUmedia, an innovative digital space for teens at the Chicago Public Library, as well as innovations in science and technology centers, projects participating in Learning Labs are expected to provide prototypes for the field based on current research about digital media and youth learning, and build a "community of practice" among the grantee institutions and practitioners interested in developing similar spaces.
This Pathways project from the Ocean Discovery Institute (ODI) seeks to develop and pilot a program model designed to fill an identified gap in citizen science research and practice literature: how to effectively engage and better understand how to foster participation among people from under-represented groups in citizen science research. The ODI model is designed around six principles: (1) leaders who are reflective of the community, (2) science that is locally relevant, (3) guided, as opposed to self-guided, experiences, (4) direct interactions with scientists, (5) progressively increasing responsibilities for participants who express interest, and (6) removing barriers to participation, such as transportation, language, family involvement and access to technology. The project addresses environmentally degraded, crime-ridden local canyons, a locally relevant STEM-related issue, and leverages the Southern California Coastal Water Research Project's (SCCWRP) regional citizen science effort focused on identifying the sources and pathways of trash through regional watersheds. The scientific research components of the project focus on four canyons in the area, employing sampling methods developed by SCCWRP. Youth who are part of other ODI programs and who have demonstrated leadership and interest in science, work with the project team to scaffold family and youth participation in project activities taking place during afterschool and weekend time. Based on continued participation in the project, community participants can become more involved in the project, starting as "new scientists" and moving through "returning scientists" to "expert scientists" roles. The project evaluation seeks to identify the role and importance of the components of the proposed model with respect to participation, retention, and learning by participants from groups under-represented in STEM. The dissemination products of this Pathways project include a white paper describing the model and lessons learned as well as presentations to community groups and education and citizen science practitioners. Based on insights from the iterative approach to the model during this Pathways study, a subsequent full-scale development project would seek to engage citizen science projects around the nation in adapting the model to increase participation of individuals from groups underrepresented in STEM, including building out ODI's citizen science programming.
DATE:
-
TEAM MEMBERS:
Lindsay GoodwinRoxanne RuzicTheresa Sinicrope Talley
The University of Texas at El Paso will conduct a research project that implements and documents the impact of co-generative dialogues on youth learning and youth-scientist interactions as part of a STEM research program (i.e., Work with A Scientist Program). Co-generative dialogues seek to specifically assist with communication and understanding among collaborators. Over four years, 108 11th grade youth from a predominantly (90%) Hispanic high school will conduct STEM research with twelve scientists/engineers (e.g., chemist, civil engineer, geologist, biologist) and undergraduate/graduate students as part of 7 month-long after school program, including bi-weekly Saturday activities for 5 months followed by an intensive month-long, self-directed research project in the summer. Youth will be randomly assigned to experimental groups that include the co-generative dialogue treatment and control groups without the intervention. The scientists and their STEM undergraduate/graduate students will participate in both experimental and control groups, with different youth. Youth will receive high school credit to encourage participation and retention. The PI team hypothesizes that co-generative dialogues will result in improved learning, communication, and research experiences for both youth and scientists. Educational researchers will conduct co-generative dialogues, observations, interviews, and surveys using validated instruments to address the following research goals: (1) To investigate the impact of the treatment (co-generative dialogues) on youth knowledge, attitudes, perceptions of their experience, and their relationships with the scientists; (2) To investigate the impact of the treatment on scientists and graduate students; and (3) To identify critical components of the treatment that affect youth-scientist interactions. It is anticipated that, in addition to providing in-depth STEM research experiences for 108 youth from underrepresented groups at a critical time in their lives, the project will result in widely applicable understandings of how pedagogical approaches affect both youth learning and scientist experiences. The project also seeks to bridge learning environments: informal, formal, university and digital.