The Project Jason Museum Network, comprising a group of some 10 science museums throughout the United States and represented in this proposal by the Franklin Institute, requests partial support of a major experiment in the use of electronic field trips organized by Dr. Robert Ballard and associates at the Woods Hole Oceanographic Institute. Over a two week period in May 1989, a series of satellite television transmissions will provide more than 150,000 students at some dozen museums with live, two way interactive TV coverage of a significant underwater archaeological expedition in the central Mediterranean Sea carried out by Dr. Ballard's group. The research expedition will be widely publicized, with public interest and attention similar to that obtained during his explorations of the Titanic. A variety of archaelological, oceanographic, and technological programs will be provided to museums through a Project Jason Satellite Network established for the purpose; participating schools, teachers and school children will already be familiar with the project and its methods through curriculum materials developed by NSTA with support from NSF's Instructional Materials Development program. An extensive evaluation program will accompany the first year's effort, and the Network plans to continue providing material from Project Jason for several additional years. In addition, other forms of distance learning will be investigated and developed using the infrastructure developed for Project Jason. Overall, more than a million individuals will view programs provided by the network in live presentations or later videotapes. Direct cost sharing by the Network Members is more than $3 million, with similar amounts contributed by Dr. Ballard's group at Woods Hole.
The New York Hall of Science (NYSCI), in collaboration with O\'Reilly Media will host a two-day workshop to explore the potential for the kinds of making, designing, and engineering practices celebrated at Maker Faire to enrich science and math learning. The purpose of this workshop is to identify and aggregate successful programming strategies that increase student engagement and proficiency in STEM, with a focus on students underrepresented in STEM careers. The meeting will be organized around three main ideas: catalyzing a national Maker movement; dissemination and scaling of design principles; and assessment of impacts on STEM learning and attitudes. The convening highlights the capacity of making activities to impact student motivation, attitudes, and conceptual understanding in STEM in both informal and formal learning environments. The workshop will be held in conjunction with the World Maker Faire at NYSCI on September 18-19, 2011. The World Maker Faire is a two-day, family-friendly event that celebrates the Do-it-Yourself or DIY movement and brings together a broad community of professionals and laypersons with a common interest in technology-based creativity, tinkering, and the reuse of materials and technology. The proposed workshop extends the work of the previous Maker Faire workshop (DRL 10-46459) by identifying initiatives that bridge the Maker and STEM communities while building students' foundational STEM knowledge and engaging audiences underrepresented in STEM careers. This workshop will accommodate approximately 50 local and national scientists, engineers, learning science researchers, educators, policymakers, and philanthropists. Select participants will present detailed case studies of maker programs, design principles, assessments, and measured outcomes in STEM attitudes and learning. Key elements of successful programs and assessment strategies will be identified across the case studies in brainstorming sessions and roundtable discussions. Following the workshop, a subset of the case studies will be compiled into an edited volume, indexed by the dimensions of student learning in the National Research Council publication, "A Framework for K-12 STEM Education: Practices, Crosscutting Concepts and Core Ideas." This project uses the momentum of the popular Maker Faire movement, based in design, engineering and technology concepts, to connect to STEM education while capitalizing on the strengths of informal learning environments. The workshop provides researchers, practitioners, and policymakers with an aggregated collection of program design principles and reliable metrics for documenting changes in preK-20 STEM attitudes and learning. The edited volume has the potential to advance the understanding of how to bridge formal and informal learning environments, while also fostering research on the affective dimensions of making in diverse audiences.
The Science Museum of Minnesota (SMM) is collaborating with the Museum of Science in Boston (MoS), the North Carolina Museum of Life and Science in Durham (NCMLS), Explora in Albuquerque, the Center for Research in Mathematics and Science Education at San Diego State University (CRMSE), and TERC in Cambridge, MA to develop, create and evaluate "MathCore for Museums," long-term math environments that children can interact with over multiple visits and over several years. The project is prototyping and producing 12 open-source, validated interactive exhibits about proportion: fractions, ratios, similarity, scaling, and percentages, basic concepts for understanding Algebra. The eight best exhibits will be replicated for each MathCore museum and the exhibits will be supported by a limited-access website designed to support and extend repeated use of exhibits and further exploration of ratio and proportion. Selinda Research Associates will conduct a longitudinal evaluation of the project. CRSME will conduct a research study of selected exhibit prototypes to investigate when children start to work on proving relations between similarity and proportion in informal settings, the relationship between children's artwork and mathematical insight, and the roles of bodily activity in learning to see relations in similarity and proportion. Results will be disseminated in peer-reviewed publications, at professional meetings, at the Association of Science and Technology Center's RAP Sessions at the NCMLS, and through the project's website.
The University of Minnesota is partnering with several nature centers in the Midwest to transform citizen "technicians" into citizen "scientists." The Driven to Discover project will use existing citizen science programs with strong educational components to engage 12-14 year old youth and their adult mentors in authentic research. The goal of the project is to develop a training model for adults who work with youth in a variety of informal education settings to involve them in authentic scientific inquiry via citizen science rather than just data collection activities. In the proof-of-concept phase, teams consisting of 4-H youth, adult leaders, and several scientists are conducting participatory action research to understand what factors lead youth to full engagement in ecological research. In phase two, project personnel are training 4-H educators, naturalists, and teachers how to engage youth and their adult leaders in other 4-H programs and other informal education programs to conduct ecological research with scientists in advisory roles. Phase one involves approximately 10 adults and 70 youth, whereas phase two involves approximately 40 adults and 300 youth. A front-end study defined the project's target audiences and partners. Formative evaluation study will monitor interactions among members of the research teams and summative evaluation will measure impacts on participants' knowledge, skills development, attitudes, and behavior. Project deliverables include youth-generated ecological research findings, web-based program implementation materials, an annual conference, and a model for engaging youth groups in informal settings in authentic scientific inquiry. The model is expected to impact more than six million youth nationwide.
DATE:
-
TEAM MEMBERS:
Karen OberhauserNathan MeyerAndrea Lorek StraussPamela NippoltKatie ClarkRobert Blair
resourceprojectProfessional Development, Conferences, and Networks
The proposed CAREER study uses a comprehensive mixed-methods design to develop measures of motivational beliefs and family supports for Spanish and English speaking Mexican-origin youth in high school physical science. The research examines a three-part model which may provide a deeper understanding of how Mexican families support youth through their general education strategies, beliefs about physical science, and science specific behaviors. This approach incorporates motivation and ecodevelopmental theories while pursuing an innovative line of research that examines how the contributions of older siblings and relatives complement or supplement parental support. The study has four aims which are to (1) to develop reliable, valid measures of Mexican-origin adolescent motivational beliefs and family supports in relation to high school chemistry and physics, (2) to test whether family supports predict motivational beliefs and course enrollment, (3) to test how indicators in Aim 2 vary based on gender, culture, English language skills and relationship quality, and (4) to examine how family supports strengthen or weaken the relationship between school-based interactions (teachers and peer support) and the pursuit of physical science studies. Spanish and English-speaking Mexican-origin youth will participate in focus groups to inform the development of a survey instrument which will be used in a statistical measurement equivalence study of 300 high school students in fulfillment of Aim 1. One hundred and fifty Mexican high school students and their families will participate in a longitudinal study while students progress through grades 9-12 to examine Aims 2- 4. Data to be collected includes information on science coursework, adolescent motivational beliefs, supports by mothers and older youth in the family, and family interactions. All materials will be in English and Spanish. The educational and research integration plan uses a three pronged approach which includes mentoring of doctoral students, teacher outreach, and the evaluation of the ASU Biodesign high school summer internship program using measures resulting from the research. It is anticipated that the study findings will provide research-based solutions to some of the specific behaviors that influence youth motivation in physical sciences. Specifically, the study will identify youth that might be most affected by an intervention and the age of maximum benefit, as well as valid, reliable measures of youths' motivation that can used in interventions to measure outcomes. The study will also identify family behaviors that may be influenced, including education strategies for school preparation, beliefs about physical science, and sciece-specific strategies such as engaging in science activities outside school. The findings will be broadly disseminated to science teachers, scholars, and families of Mexican-origin youth. This multi-tiered approach will advance current scholarship and practice concerning Mexican-origin adolescents' pursuit of physical science.
The Exploratorium and the Museum of Life and Science will develop, evaluate and implement Science of Sharing, a three-year full-scale development project designed to bring the scientific study of human social behavior to a broad public audience. Science of Sharing will create new ways for visitors to experiment with social psychology and will generate important information for informal science institutions committed to involving visitors in discussions of personal, societal, and scientific responses to real-world challenges. Science of Sharing addresses a critical ISE issue: creating ways for visitors to experiment with inquiry based exhibits and activities that heighten public knowledge of the study of human social behavior. Based on research in social psychology and game theory, the project (a) fosters public engagement in activities exploring collaborative behavior and resource sharing; (b) promotes awareness of connections between these experiences and STEM-related research in psychology and economics; and (c) links individual behaviors to real-world issues of resource depletion and group conflict. The primary audience is youth and youth-adult museum visitors, with particular focus on underrepresented communities with limited access to communication technologies. The secondary audience is ISE professionals with interest in new kinds of interactive experience and visualization tools focusing on social behavior and techniques for fostering social interaction and public discussion of science. The project will (1) conduct front end evaluation to assess visitor attitudes and knowledge about issues of cooperation and resource use; (2) design, prototype, and evaluate 15 inquiry-based exhibits and 4 Experimonths (public events with web, museum, and community-based components on social-psychological topics); (3) conduct design-based research to investigate aspects of these exhibits and activities that prompt self-reflection and build metacognitive skills; and (4) work with local school districts to adapt exhibits for classroom use.
TERC, in partnership with the Boston Museum of Science, will investigate deaf and hard-of-hearing museum visitors' use of App-based signing math and science dictionaries delivered on the iPod Touch. The project is employing a mixed-methods design to study how and the extent to which family visitors, ages 5-12+, and classroom visitors in grades K-12 use the dictionaries to access and communicate about exhibit content and engage in activities. Study participants will visit one of two preselected exhibit areas and do several activities that have Word Lists posted on the activity panels. The Word Lists include key terms for the activity that are also included in at least one of the dictionaries. They will then do several activities that do not have Word Lists posted. A coin toss will be used to randomly assign the first group of visitors to a starting Word List condition. The second group will then begin with the alternate Word List condition. From this point on, subsequent groups will continue to alternate the starting point. Data collection will include observation, videotaping, interviews, and surveys. Results of the study will be disseminated through a report of findings, presentations and publications.
The City as Learning Lab (CaLL) is a comprehensive research and development initiative designed to create new measures of audience impact in technology experiences; identify features of university-community collaboration that facilitate sustainable community programs; and produce a set of tools and resources that allow other cities to tailor creative robotics programs to unique audiences. Project partners include the University of Pittsburgh Center for Learning in Out-of-School Environments (UPCLOSE), the Community Robotics Education and Technology Empowerment (CREATE) lab at Carnegie Mellon University's Robotics Institute, and the Georgia Institute of Technology as well as local museums, community organizations, and afterschool clubs. CaLL builds on the work of three existing youth technology programs in Pittsburgh targeting audiences ages 9-15: the Robot Diaries, Neighborhood Nets, and Robot 250. Research questions relate to creative processes in informal learning settings, use of robotics to engage diverse audiences, and changes in technological fluency after students leave the informal learning setting and apply their new knowledge and skills at home or in other learning contexts. The research incorporates data from up to 1000 program participants. Findings will establish evidence for how technological fluency can be measured, supported, and developed through informal technology learning experiences. Project deliverables include a CaLL curriculum, toolkit, new measures of audience impact, and identification of factors that support university/community collaborations. Broader impacts in informal technology education will be achieved by developing flexible toolkits that allow other communities to adapt and adopt CaLL technologies, curricula, and activities.
The project, from Indiana University Purdue University Indianapolis (IUPUI), investigates the design, development and dissemination of metaphoric aural sound symbols (audemes), audeme dictionary and riddle audeme games to teach scientific concepts to 75-100 students who are blind and visually impaired (BVI). A number of research questions are included. How do audemes and sequences function as metaphors of STEM concepts? Which audeme game structures and strategies work best to engage BVI students? How do audemes and audeme games impact STEM education? The audeme-to-concept-to-audeme dictionary will build scientific concepts using standards, state-approved science textbooks, teachers and students. They will also examine secondary words that are associated with the science concepts by mining textbooks, identifying tertiary concepts, and establishing a preliminary dictionary of audemes. A team of education, students and professionals who are experts will design the audemes after multiple iterations. A control and experimental group of students will test the audemes through traditional methods and audeme games. Students will complete a pre and post test of scientific concepts with repeated measures ANOVA to examine changes on student scores from the control and experimental groups. This work using audemes to teach scientific concepts will make contributions to BVI, learning disabilities, and general population students. Audemes and audeme games have the potential for broad implementation in both formal and informal settings for computers, mobile, and other networked platforms.
DATE:
-
TEAM MEMBERS:
Steven MannheimerMathew PalakalDavide Bolchini
The Nexus of Energy, Water, and Climate: From Understanding to Action (Café +) project will develop and test two interactive board game concepts focused on energy, water, and climate with youth and adults from four highly diverse communities in New Mexico. The four primary goals of the project are to: (a) develop, play test, and implement two board, card, or other non-electronic games grounded in energy, water, and climate content at four project sites, (b) identify the key characteristics of the games that maximize problem solving while stimulating interest, engagement, and learning, (c) explore the implications of game playing on dialog, learning, and Café+ satisfaction for youth and adult participants, and (d) evaluate the viability of this model for full scale implementation throughout the existing Café Scientifique program, from which this project is based. Los Alamos National Laboratory, Sandia National Laboratory, PNM Resources, Scott Balaban Games Design, the Los Alamos County Utilities Department, and a host of advisors and consultants from a broad range of organizations and institutions will collaborate to develop, test, and implement the Café+ games model. The primary deliverables include: (a) two non-electronic multiage commercial quality games focused on energy, water, and climate content, (b) a comprehensive pilot study examining the impact, effectiveness, and viability of the Café+ model with the target audiences, and (c) formative and summative evaluations of the games implementation model. A significant outcome of Café+ is that New Mexico youth and adults, from diverse backgrounds, will learn relevant science content through the development and testing of engaging, innovative commercial quality games. Over 250 youth and adults will benefit directly from their participation in the pilot study. They will not only learn important science content while working collaboratively in groups (youth only and youth/adult groups), but they will also participate in an authentic scientific process experience as playtesters. In this role, youth and adults will experience critical science concepts such as trial and error and refinement. Further, the games will be made publicly available and implemented across the entire Café Scientifique program (n=960 youth). The evaluation study will employ a mixed methods approach to examine project implementation, effectiveness, and impacts. Focus groups, observations, and surveys will be employed to assess a number of variables such as (but not limited to): content knowledge and learning, interest, engagement, game features, game play processes, gaming obstacles and challenges, participant interactions, and motivation. Embedded assessment opportunities will also examine participants\' decision making abilities, analytical skills, and ability to transfer knowledge gained to real world situations as they navigate through the games. Data collected at the youth-only pilot test sites will be used in a comparative analysis of similar variables tracked at the youth and adult sites. Formative approaches will provide iterative, ongoing opportunities for programmatic and game refinement and adjustments. The formative and summative evaluations will endeavor to document critical data and findings needed to assess the viability of Café+ as a full scale development project, with additional games and project sites across the country. The Café+ project would add to the limited literature base on learning and science engagement of youth within Science Café settings in the 21st century. More critically, this pilot study could contribute to the dearth of current research on the impact of non-electronic game play can have on youth only groups and youth/adult groups working collaboratively to make important scientific decisions within Science Café settings. This comparative data could prove significant for other program models interested in implementing similar youth and adult game based program. Further, the relevance of the content could potentially spark youths' interest not only in pursuing courses and careers in STEM, but it could also motivate youth and adult participants to become more involved in civic engagement activities occurring within and beyond their local communities.
The Louisiana State Museum and Tulane University/Xavier University Center for Bioenvironmental Research and the University of Rhode Island Graduate School of Oceanography, along with several other research collaborators, designers, evaluators, and the Times-Picayune newspaper are partnering to develop a multi-pronged approach on educating the general public, school children, teachers and public officials on the STEM-related aspects of Hurricane Katrina and its implications for the future of New Orleans and other parts of the country. The major products will be an 8,500 square-foot semi-permanent exhibit, smaller exhibits for Louisiana regional libraries, a comprehensive Web site on hurricanes, a set of studies on informal learning, a case study for public officials about the relevance of science research to policy and planning, teacher workshops, and a workshop for interested exhibit designers from around the country. This project advances the field of informal science education by exploring how museums, universities, and their communities can work together to provide meaningful learning experiences on STEM topics that are critical to solving important community and national issues.
This project augments an NCES data collection effort for the High School Longitudinal Study by including 150 additional schools in up to 10 selected states to create state representative samples of at least 40 schools in each state. NCES will create a contract with a survey organization to collect survey data from students in about 800 schools starting at the 9th grade and following them to age 26. The student, teacher, and parent survey data will be merged with state administrative data. Thus the final data set for these states will include detailed longitudinal data on student education histories, test scores, courses, demographics, and other survey information about parents and teachers. In some of the states the student data will be linked with detailed teacher data. The purpose of this augmentation is to provide support for additional schools to create state samples. NSF will also be involved in planning for future surveys of these students as they reach college age.