Based on the premise that one component of NASA's pre-college education program is intended to support and enact school reform, the Committee for the Evaluation and Review of NASA's Pre-College Education Program requested an analysis of how the NASA Explorer School (NES) Model aligns with other national models of school-wide improvement and reform. The purpose and focus of this paper is to summarize key elements of major school improvement and reform models as well as specific content reform models from the literature, and to analyze the extent to which there is alignment between these models
The purpose of this paper is to explore and discuss the role of practical work in the teaching and learning of science at school level. It emphasizes practical work as a means for students to learn about the nature of science.
Reports from the NSF, NRC, AAAS, and others urge over and over that we must teach "science as science is done," that "science is a way of knowing," that our goal should be to impart "scientific habits of mind," and that learning must be learner-centered and oriented toward process. Fine. But what does this really mean for science education, and especially laboratory education?
The purpose of this paper is to examine the role of laboratory-based science from a perspective that synthesizes developments in (1) science studies, e.g., history, philosophy and sociology of science and (2) the learning sciences, e.g., cognitive science, philosophy of mind, educational psychology, social psychology, computer sciences, linguistics, and (3) educational research focusing on the design of learning environments that promote dynamic assessments. Taken together these three domains have reshaped our thinking about the role inquiry, and in turn the laboratory, has in science
This paper explores the role of laboratory and field-based research experiences in secondary science education by summarizing research documenting how such activities promote science learning. Classroom and field-based "lab work" is conceptualized as central components of broader scientific investigations of the natural world conducted by students. Considerations are given to nature of professional scientific practice, the personal relevance of student's understanding of the nature of empirical scientific research, and the role of technology to support learning. Drawing upon classroom learning
To begin, this paper describes the climate in science education in the United States, and describes and defines formative assessment. Next, Black & Wiliam’s review and two other important empirical studies will be summarized. Then, a framework characterizing different forms of formative assessment is presented. Non-empirical studies are organized according to this continuum. Finally, the paper describes limitations in the implementation of formative assessment in K-8 science, and summarizes assessment practices that show promise for improving student learning. The important contribution of the
Research in the out-of-school time (OST) field confirms that there is a strong connection between professional development (PD) for staff and positive outcomes for youth. According to Heather Weiss, Founder and Director of the Harvard Family Research Project (HFRP), professional development for those who work with children and youth is fraught with challenges and ripe with opportunity and specifically, the opportunity to increase staff quality, which experts agree is critical to positive experiences for children and youth (Weiss, 2005/2006). However, as Thomas Guskey (1998) states, "For many
DATE:
TEAM MEMBERS:
University of PennsylvaniaNancy Peter
Young people’s participation in science, technology, engineering and mathematics (STEM) is a matter of international concern. Studies and careers that require physical sciences and advanced mathematics are most affected by the problem and women in particular are under‐represented in many STEM fields. This article views international research about young people’s relationships to, and participation in, STEM subjects and careers through the lens of an expectancy‐value model of achievement‐related choices. In addition it draws on sociological theories of late‐modernity and identity, which situate
DATE:
TEAM MEMBERS:
Maria Vetleseter BoeEllen Karoline HenriksenTerry LyonsCamilla Schreiner
“Science for All” is a mantra that has guided science education reform and practice for the past 20 years or so. Unfortunately, after 20 years of “Science for All” guided policy, research, professional development, and curricula African Americans continue to participate in the scientific enterprise in numbers that are staggeringly low. What is more, if current reform efforts were to realize the goal of “Science for All,” it remains uncertain that African American students would be well-served. This article challenges the idea that the type of science education advocated under the “Science for
This article describes how after-school programs can nurture young scientists and boost the country's scientific literacy. It makes a case for integrating science into high-quality afterschool programs.
DATE:
TEAM MEMBERS:
The After-School CorporationLucy FriedmanJane Quinn
Youth EXPO: Youth Exploring the Potential of Virtual Worlds was a proof-of-concept study to determine if an immersive, 3D virtual environment is an effective medium to increase high school students’ understanding of current climate change research and motivate interest in learning more about climatology-related careers. The project was conducted by the Miami Science Museum in partnership with Goddard Institute of Space Sciences and Goddard Space Flight Center, and implemented with high school students in Miami. The overall goal of the project was to develop a prototype cyber resource to promote awareness of climate change and careers in climatology, in support of NASA’s role in helping youth understand how Earth’s global climate system is changing. YouthEXPO explored the extent to which 3D virtual learning experiences can increase high school students’ conceptual understanding of complex scientific issues related to climate change. This was accomplished through the development of a series of virtual exhibits, YouthEXPO Island, and pilot testing of the exhibition with high school students as part of a broader climate change curriculum. Youth EXPO Island is a series of simulations in an immersive, 3D virtual world environment designed to increase high school students’ understanding of current climate change research and motivate interest in learning more about climatology-related careers. Modules include EarthLab, IceLab, VolcanoLab and SpaceLab, four environmental simulations where avatars can analyze the relationship between global temperature change and a variety of climate factors, learn about remote sensing and field sampling techniques, and explore related careers.
Journey into Space (JIS) is designed to improve student, educator, and general public understanding of earth/space science and its relationship to NASA goals and objectives through the use of a traveling GeoDome (inflatable planetarium) and engaging supporting programming at The Journey Museum. The Museum collaborates with area colleges, school districts, K-12 educators, youth serving organizations, astronomical affiliations, and others. The overall goal of JIS is to improve student, educator, and general public understanding of STEM and its relationship to NASA goals and objectives. JIS objectives are: 1) To increase student and public interest and awareness in STEM areas; 2) To increase student interest in pursuing STEM careers; 3) To improve teacher knowledge of NASA related science; 4) To increase teacher comfort level and confidence in teaching NASA related science in their classrooms; 5) To increase collaboration between informal and formal science educators; 6) To increase student and public understanding of Plains Indians ethno astronomy; and 7) To increase museum visitors’ interest and understanding of NASA related science. The Museum produced 2 films (“Cradle of Life”, “Looney Moons”) that are offered daily, 4 recurring monthly programs (Final Frontier Friday, Amazing Science, SciGirls that became Science Explorer’s Club, and Black Hills Astronomical Society meetings), summer robotics classes and teachers’ workshops, annual Earth Science Day, in addition to the GeoDome programming that has toured the region including presentations in the three poorest counties in the United States. The ethno-astronomy is underway in partnership with Oglala Lakota College and South Dakota Space Grant Consortium.