The article discusses initiatives by the Cornell Lab of Ornithology to connect youth to the natural world through birding. It has developed educational resources, known as BirdSleuth which are used around the U.S. to support students in citizen-science participation, outdoor activities, and inquiry-based investigations. It talks about BirdSleuth's Investigating Evidence module, the "Classroom BirdScope" research journal, and the Cornell Lab of Ornithology's eBird citizen-science project.
The article discusses citizen science projects focused on entomology, and examines their usefulness for engaging students in science education and providing meaningful hands-on educational experiences. Advice for incorporating citizen science into lessons and curricula are offered, and the applicability of entomology to science education standards is touched on.
DATE:
TEAM MEMBERS:
Renee ClarJames WandersheeJohn GuytonMichael Williams
There is a vast terrain of emerging research that explores recent innovations in digital games, particularly as they relate to questions of teaching and learning science. One such game, Citizen Science, was developed to teach players about the practice of citizen science as well as lake ecology. Citizen science is a pedagogy that has a long history within the scientific community, engaging the public in ongoing community and environmental surveys to collect data for existing small-scale studies. More recently, citizen science has gained traction as an educational context for teaching and
Many of the biggest problems facing the United States and the world require engineering expertise to solve: climate change, feeding a growing population, energy independence, access to clean water, crumbling infrastructure, and others. And with global economic competitiveness inextricably linked to innovation, employers across a wide range of engineering and non-engineering fields such as health care, management, and marketing are seeking employees with engineering knowledge and related skills. These skills include the ability to creatively and systematically solve ill-defined problems
DATE:
TEAM MEMBERS:
Community for Advancing Discovery Research in Education (CADRE)
The Young Developers program is an after school program conceptualised and run by The P-STEM Foundation. It introduces computer programming and design concepts to high school age students from South African historically disadvantaged communities, where the majority of students have had little or no interaction with computers. Young Developers uses Self Organised Learning Methodology and involves introducing a series of increasingly complex challenges / questions that the participants have to collaboratively solve. The first module is run in Scratch with the final objective being the creation of a racing car game. The second module is run in Python using Turtle graphics with an objective of creating an animation. This program runs as pods in each of the communities that the P-STEM foundation works in. Each pod has up to 30 teens from the age of 10 to 18. Each pod is peer led and peer driven, and the pace of learning is determined by the participants. In 2015, we would also like to introduce national competitions which pods participate in against other pods.
The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE:
-
TEAM MEMBERS:
Fred MartinDouglas PrimeMichelle Scribner-MacLeanSamuel Christy
Internet Community of Design Engineers (iCODE) program, which took an innovative approach to structuring self-directed learning – using a collaborative on-line environment to facilitate hands-on activities, was a three year program led by the University of Massachusetts Lowell and Machine Science Inc., Cambridge. The overall objective of this program, which involved after-school and summer sessions and was funded by NSF’s Innovative Technology Experiences for Students and Teachers (ITEST) Program, was to increase the likelihood that participating middle school and high school students will
DATE:
TEAM MEMBERS:
Rucha LondheColleen ManningRachel SchechterLaura HousemanIrene Goodman
Bang, Warren, Rosebery, and Medin explore empirical work with students from non-dominant communities to support teaching science as a practice of inquiry and understanding, not as a “settled” set of ideas and skills to learn.
The adoption of the Next Generation Science Standards means that many educators who adhere to model-based reasoning styles of science will have to adapt their programs and curricula. In addition, all practitioners will have to teach modeling, and model-based reasoning is a useful way to do so. This brief offers perspectives drawn from Lehrer and Schauble, two early theorists in model-based reasoning.
In 2008, COSI received funding from the Institute of Museum and Library Services to develop the exhibit Labs in Life (LG-26-08-0146). The development of the Labs in Life embodies a unique model for collaboration, with active researchers interested in research outcomes while simultaneously serving as models for the public, and science center staff concurrently gleaning new and changing content for exhibits and programs. While each partner is motivated by many different goals, all agree that they are interested in stimulating public interest in and understanding of science and technology
DATE:
TEAM MEMBERS:
Institute for Learning InnovationJoe E Heimlich
Magnolia Consulting, LLC conducted a formative and summative evaluation to examine public perceptions of the utility and quality of two labs/exhibits within the North Carolina Museum of Natural Sciences Natural World Investigate Lab, Biofuels and Science of Scent. Appendix includes survey.
DATE:
TEAM MEMBERS:
North Carolina State Museum of Natural ScienceMary Styers
This article describes discussions about the relationship between afterschool programs and the Common Core Standards at a networking meeting sponsored by the Robert Bowne Foundation for out-of-school time (OST) providers in New York City in the fall of 2013. The meeting was entitled "Introducing the Common Core Learning Standards: What Are They? What Do We Need to Know?"
DATE:
TEAM MEMBERS:
Suzanne MartenSara HillAnne Lawrence