Tinkering experiences in informal learning spaces can engage families in engineering practices and support learning (Pagano et al., 2020). Further, reflections after informal learning experiences can reveal and extend children’s memory and learning (Pagano et al., 2019), but reflections vary by age, culture, setting, program, and other factors (Fivush et al., 2006). We examined how the conversational structure and engineering content of families’ reflections vary across multiple museum visits and across different types of tinkering programs (e.g., open-ended vs. function-focused).
Tinkering activities designed for parents and children can foster spatial thinking, which benefits spatial skill development (Ramey et al., 2020). During tinkering activities, families may be challenged to use tools and materials to solve open-ended problems (Bevan, 2017). The problems specified by different tinkering challenges can highlight intrinsic or extrinsic spatial information (Chatterjee, 2008; Mix et al., 2018). In this project we asked, how does the spatial information highlighted by a tinkering challenge affect the quality of families’ spatial thinking?
DATE:
TEAM MEMBERS:
Naomi PolinskyElena FiegenKaitlyn HurkaCatherine HadenDavid Uttal
The tinkering process of making, testing, and iteratively redesigning projects can teach children about engineering concepts (Marcus et al., 2021; NGSS, 2013), but there is variability in how tinkering programs are designed. Storytelling may make children’s learning experiences personally meaningful and narratively organized, thereby supporting memory (Bruner, 1996). We designed multiple story-based tinkering programs and examined how the types of story characters and goals introduced in the tinkering programs would relate to the content of families’ talk in post-tinkering reflections.
In this project, we asked whether storytelling during tinkering might support children’s engagement in STEM and how that may differ across boys and girls. According to Bruner (1996), stories can help children to organize experiences by adding coherence, increasing understanding, and facilitating learning. We observed associations between story and STEM in two contexts: home and museum exhibit.
Given the important role of autonomy support in children’s motivation and learning, this study asked whether parents’ use of autonomy supportive language (vs. controlling language) was associated with children’s engagement in science, technology, engineering, and mathematics in a bi-directional manner during an at-home tinkering activity.
This guide shares some of the successes and challenges behind the Science Museum of Minnesota’s Cardboard City exhibition and our partnership with museums across the country through Cardboard Collaborative.
The Cardboard Collaborative is the product of 10 years of work at the Science Museum of Minnesota and part of a larger collaboration with local community organizations to center BIPOC family priorities and experiences. This guide is intended to share what they have learned and support others to create their own cardboard maker worlds.
Over the course of six years (2016–2022), History Colorado, three Ute Tribes, and archaeology and ethnobotany partners undertook an ambitious, highly collaborative project, called Ute STEM, to explore new ways of looking at the field of Science, Technology, Engineering, and Math (STEM) learning. This final report goes into details about the project and lessons learned.
DATE:
TEAM MEMBERS:
Elizabeth CookSheila GoffKate LivingstonShannon Voirol