This poster was presented at 2017 Campus Office of Undergraduate Research Initiatives (COURI) Symposium, El Paso, TX. It describes the Work With a Scientist (WWASP) program, in which scientists and high school students engage in co-generative dialogues.
This summative evaluation report focuses on the impact that the Working with a Scientist Program at the University of Texas at El Paso (UTEP) had on its student participants. Student participants were recruited from regional high schools that are categorized as Title I schools, due to the large population of low income students that they serve. The participants engaged in mentored research activities a UTEP every other Saturday during the spring semester and on weekdays during the summer. Their mentors were professional scientists from different STEM disciplines, such as Chemistry, Immunology
This report comprises the third part of a 4-year evaluation assessing the impact of the Working with a Scientist Program (WWASP) at the University of Texas at El Paso (UTEP) had on its student-participants. This report includes an assessment of the program’s impact on the third cohort of student-participants. To assess the students’ overall performance, several measures were used. First, a review of participant’s academic performance before and after their involvement in the program was conducted. Second, the impacts that the programs’ cogenerative dialogues (cogens) had in the third cohort of
This report is part of a four-year evaluation assessing the impact of the Working with a Scientist Program (WWASP) at the University of Texas at El Paso (UTEP) had on its student-participants. This report includes an assessment of the impact on the first two cohorts of student-participants. This program selected participants from local high schools to take part in research activities for the spring and summer semester. To assess the students’ overall performance, several measures were used. First, a review of participant’s academic performance before and after their involvement in the program
DATE:
TEAM MEMBERS:
Lizely Madrigal-GonzalezGuadalupe Corral
This report is part of a four-year evaluation assessing the impact that the Working with a Scientist Program at the University of Texas at El Paso (UTEP) had on its first cohort of participants. Participants were students from a regional high school that were selected to take part in research activities every other Saturday during the Spring semester and on weekdays during the summer. The evaluation components included in this report focus on assessing students’ academic performance and the gains the students made while in the program. It also focused on an assessment of students’ perceptions
DATE:
TEAM MEMBERS:
Guadalupe CorralJacqueline LowereeJoseph Negron
Learn how to create opportunities for young people from low-income, ethnically diverse communities to learn about growing food, doing science, and how science can help them contribute to their community in positive ways. The authors developed a program that integrates hydroponics (a method of growing plants indoors without soil) into both in-school and out-of-school educational settings.
The University of Chicago's Yerkes Observatory, the National Radio Astronomy Observatory, the University of North Carolina, the Astronomical Society of the Pacific, and 4-H are collaborating to provide professional development to 180 4-H leaders and other informal science educators, and engage 1,400 middle school youth in using research-grade robotic telescopes and data analysis tools to explore the Universe. Youth participating in 4H-based out-of-school programs in Wisconsin, West Virginia and North Carolina are learning about the universe and preparing for STEM careers by conducting authentic astronomy research, completing astronomy-related hands-on modeling activities, interacting with astronomers and other professionals who are part of the Skynet Robotic Telescope Network, and interacting with other youth who part of the Skynet Junior Scholars virtual community. The project is innovative because it is providing a diverse community of 4-H youth (including sight- and hearing-challenged youth and those from underrepresented groups) with opportunities to use high-quality, remotely located, Internet-controlled telescopes to explore the heavens by surveying galaxies, tracking asteroids, monitoring variable stars, and learn about the nature and methods of science. Deliverables include (1) online access to optical and radio telescopes, data analysis tools, and professional astronomers, (2) an age-appropriate web-based interface for controlling remote telescopes, (3) inquiry-based standards-aligned instructional modules, (4) face-to-face and online professional development for 4-H leaders and informal science educators, (5) programming for youth in out-of-school clubs and clubs, (6) evaluation findings on the impacts of program activities on participants, and (7) research findings on how web-based interactions between youth and scientists can promote student interest in and preparedness for STEM careers. The evaluation plan is measuring the effectiveness of program activities in (1) increasing youths' knowledge, skills, interest, self-efficacy, and identity in science, including youth who are sight- and hearing-impaired, (2) increasing educators' competency in implementing inquiry-based instruction and their ability to interact with scientists, and (3) increasing the number of Skynet scientists who are involved in education and public outreach.
The University of Texas at El Paso will conduct a research project that implements and documents the impact of co-generative dialogues on youth learning and youth-scientist interactions as part of a STEM research program (i.e., Work with A Scientist Program). Co-generative dialogues seek to specifically assist with communication and understanding among collaborators. Over four years, 108 11th grade youth from a predominantly (90%) Hispanic high school will conduct STEM research with twelve scientists/engineers (e.g., chemist, civil engineer, geologist, biologist) and undergraduate/graduate students as part of 7 month-long after school program, including bi-weekly Saturday activities for 5 months followed by an intensive month-long, self-directed research project in the summer. Youth will be randomly assigned to experimental groups that include the co-generative dialogue treatment and control groups without the intervention. The scientists and their STEM undergraduate/graduate students will participate in both experimental and control groups, with different youth. Youth will receive high school credit to encourage participation and retention. The PI team hypothesizes that co-generative dialogues will result in improved learning, communication, and research experiences for both youth and scientists. Educational researchers will conduct co-generative dialogues, observations, interviews, and surveys using validated instruments to address the following research goals: (1) To investigate the impact of the treatment (co-generative dialogues) on youth knowledge, attitudes, perceptions of their experience, and their relationships with the scientists; (2) To investigate the impact of the treatment on scientists and graduate students; and (3) To identify critical components of the treatment that affect youth-scientist interactions. It is anticipated that, in addition to providing in-depth STEM research experiences for 108 youth from underrepresented groups at a critical time in their lives, the project will result in widely applicable understandings of how pedagogical approaches affect both youth learning and scientist experiences. The project also seeks to bridge learning environments: informal, formal, university and digital.
The Youth Astronomy Apprenticeship (YAA) is a yearlong, out-of-school time initiative that connects urban teenage youth with astronomy as an effective way to promote scientific literacy and overall positive youth development. The program employs the strategies of a traditional apprenticeship model, common in crafts and trades guilds as well as in higher education. During the apprenticeship, youth develop knowledge and skills to create informal science education projects: through these projects they demonstrate their understanding of astronomy and use their communication skills to connect to
Overarching evaluation questions focus on continuous improvement, the degree to which the Salmon Camp project achieves its objectives with regards to students' skills and attitudes, as well as implementation and outcome questions. Evaluation activities are designed to probe five major areas: 1. Student Knowledge and Skills. To what extent do students gain experience with digital tools, field research, and workplace skills? 2. Student Attitudes. How are students' attitudes and self-efficacy as science students changing with involvement in Salmon Camp? How are career interests changing or
DATE:
TEAM MEMBERS:
Phyllis AultOregon Museum of Science and Industry
Overarching evaluation questions focus on continuous improvement, the degree to which the Salmon Camp project achieves it's objectives with regards to students' skills and attitudes, as well as implementation and outcome questions. Evaluation activities are designed to probe five major areas: 1. Student Knowledge and Skills. To what extent do students gain experience with digital tools, field research, and workplace skills? 2. Student Attitudes. How are students' attitudes and self-efficacy as science students changing with involvement in Salmon Camp? How are career interests changing or
DATE:
TEAM MEMBERS:
Phyllis AultOregon Museum of Science and Industry