This project will develop standardized, exportable and comparable assessment instruments and models for Women In Engineering (WIE) programs nationwide, thus allowing them to assess their program's activities and ultimately provide data for making well-informed evaluations.
To accomplish this goal, the principal investigators at the University of Missouri and Penn State University will work over a three-year period with their institutions' WIE programs and three cooperating programs at Rensselaer Polytechnic Institute, Georgia Tech, and University of Texas at Austin. With these five programs that collectively represent a variety of private and public, years of experience for WIE directors and student body characteristics, the investigators will pilot, revise, implement, conduct preliminary data analysis and disseminate easy-to-access, reliable and valid assessment instruments. The principles of formative evaluation will be applied to all instruments and products. All institutions will use the same set of instruments, thus allowing them to have access to powerful benchmarking data in addition to the data from each of their respective institutions.
A prior project, the Women's Experience in College Engineering Project (WECE) sought to characterize the factors that influence women students' experiences and decisions by studying college environments, events and support programs that affect women's satisfaction with their engineering major, and their decisions to persist or leave these majors. In contrast to WECE's macro-level and student focus, this proposal's target audience is WIE directors, with a focus on WIE programs, not students.
Women in Engineering programs around the United States are a crucial part of our country's response to the need for more women in engineering professions. There are about 50 WIE programs nationwide. Half have expressed interest in this effort. WIE directors will benefit by having ready-made assessment tools that will allow them to collect data on programs, evaluate these programs, and make decisions on how to revise programs and / or redistribute limited resources to maximize overall program effectiveness. Data from these instruments will also provide substantiated evidence for administrators, advisory boards and potential funding agencies. Finally, because these instruments will be available nationwide, programs will have the opportunity to take advantage of powerful benchmarking data for their decision-making processes.
This project provides the next logical step in the national movement to recruit and retain women in engineering.
DATE:
-
TEAM MEMBERS:
Rose MarraBarbara Bogue
resourceprojectProfessional Development, Conferences, and Networks
The Coalition for Science After School (CSAS) was established in 2004 in response to the growing need for more STEM (science, technology, engineering, and mathematics) learning opportunities in out-of-school time. CSAS sought to build this field by uniting STEM education goals with out-of-school time opportunities and a focus on youth development. Over a decade of work, CSAS Steering Committee members, staff and partners advocated for STEM in out-of-school-time settings, convened leaders, and created resources to support this work. CSAS leadership decided to conclude CSAS operations in 2014, as the STEM in out-of-school time movement had experienced tremendous growth of programming and attention to science-related out-of-school time opportunities on a national level. In its ten-year strategic plan, CSAS took as its vision the full integration of the STEM education and out-of-school time communities to ensure that quality out-of-school time STEM opportunities became prevalent and available to learners nationwide. Key CSAS activities included: (1) Setting and advancing a collective agenda by working with members to identify gaps in the field, organizing others to create solutions that meet the needs, identifying policy needs in the field and supporting advocates to advance them; (2) Developing and linking committed communities by providing opportunities for focused networking and learning through conferences, webinars, and other outreach activities; and (3) Identifying, collecting, capturing, and sharing information and available research and resources in the field. The leadership of the Coalition for Science After School is deeply grateful to the funders, partners, supporters, and constituents that worked together to advance STEM in out-of-school time during the last decade, and that make up today's rich and varied STEM in out-of-school time landscape. We have much to be proud of, but as a movement there is much more work to be done. As this work continues to expand and deepen, it is appropriate for the Coalition for Science After School to step down as the many other organizations that have emerged over the last decade take on leadership for the critical work that remains to be done. A timeline and summary of CSAS activities, products, and accomplishments is available for download on this page. All resources noted in the narrative are also available for download below.
This paper reports a formative evaluation of an interactive exhibit in the Museum of Science, Boston, that encouraged visitors to create a model using everyday materials. The materials provided for visitors to create their models changed during the period of the evaluation, and visitors were observed and interviewed as they engaged with the various prototypes. Evaluation results show that the type of modeling material presented influenced the visitors' model making process and individual learning and behaviors as well as the interactions visitors had with each other.
This summative evaluation of the exhibition Robots & Us was designed to investigate how visitor audiences used and experienced this exhibition in relation to the project’s objectives and challenges. Visitors’ expectations and perceptions in relation to the project’s content goals prompted the summative evaluation to focus on specific challenges including: attitudes and perceptions about technology, connections between robots and people, appeal to a broad audience, and reactions to specific exhibits.
DATE:
TEAM MEMBERS:
Jeff HaywardJolene HartScience Museum of Minnesota
The Nanoscale Informal Science Education Network (NISE Network) is a national infrastructure that links science museums and other informal science education organizations with nanoscale science and engineering research organizations. The Network's overall goal is to foster public awareness, engagement, and understanding of nanoscale science, engineering, and technology. In support of the NISE Network, this 2005 report reviews 20 secondary research documents with a focus on how nanotechnology has penetrated the consciousness of the general adult public.
DATE:
TEAM MEMBERS:
Barbara FlaggNanoscale Informal Science Education (NISE) Network
Given its ongoing commitment to universal design and the integration of technologies into the museum experience, the Museum of Science decided to employ a handheld Multimedia Tour to accompany Star Wars: Where Science Meets Imagination, an exhibition about the real world meeting Star Wars technologies. With the help of leading tour guide developer, Antenna Audio, a 22-stop tour was produced featuring narration, Behind the Scenes interviews with individuals who had worked on the films, Star Wars film clips, still photos and the ability to send information home. An American Sign Language version
Museums are places where visitors of all abilities and disabilities are invited to learn. This diversity offers a unique challenge how can museums ensure that everyone can benefit from the learning experience? Universal design, which is the design of products and environments to be usable by all people, to the greatest extent possible, without the need for adaptation or specialized design (Center for Universal Design, 2002), puts forward a potential solution. This paper offers an overview of universal design, including its practice in the museum, formal education, and digital media fields, and
The following document summarizes results from a literature review conducted in Fall 2004 to inform the development of a nationwide research project that will explore universal access to the learning of science, technology, engineering, and mathematics (STEM) in museums. Through this project, the Museum of Science, with four collaborating institutions, will further the industry's knowledge and understanding of ways to create museum exhibitions that are inclusive of the learning needs of all museum visitors, including those with disabilities. Guiding the literature review was a topical
The Nanoscale Science and Engineering Education (NSEE) Center for Learning and Teaching (NCLT) would focus on the research and development of nano-science instructional resources for grades 7-16, related professional development opportunities for 7-12 teachers, and programs infused with nano-science content for education doctoral students. The Center would bring together educators and scientists from several areas of nano-science and engineering research to collaborate with science teachers and doctoral candidates in education on both the development of the resources and research on their efficacy. The PI has prior experience as director of the Materials World Modules project, an NSF-funded curriculum currently in use in several secondary schools across the country. Lead partners in the proposed Center are Northwestern University, Purdue University, University of Michigan, University of Illinois at Chicago and University of Illinois at Urbana-Champaign. Additional partners include Argonne National Laboratory, West Point Military Academy, Alabama A & M University, Fisk University, Hampton University, Morehouse College and University of Texas at El Paso. The additional partners will widen the geographic range of the project, expanding opportunities to reach a diverse and currently underrepresented population of graduate students, teachers and ultimately students. STEM and Education faculty and researchers from the partner institutions would participate in interdisciplinary teams to address the Center's mission: Provide national education leadership and resources for advancing NSEE Create and implement professional development programs in NSEE Use innovative ideas in learning to design instructional materials for grades 7-16 Conduct research relating to integration of NSEE into science, technology, engineering and mathematics (STEM) education.
DATE:
-
TEAM MEMBERS:
R. P. H. ChangThomas MasonNcholas GiordanoJoseph Krajcik
The Chicago Children's Museum (CCM) will develop CityScape, a 2,500 sq ft permanent exhibition based on design strategies for researching and promoting adult-child collaborative learning. INTELLECTUAL MERIT: This project will develop and test culturally-sensitive exhibit and program design approaches for increasing adult involvement in children's learning; explore the potential of visual documentation of learning through play to make children's progress more visible as well as build caregiver confidence and skills; and demonstrate exhibition design as an experimental platform for a museum-learning researcher partnership. Project partners include the Chicago Metropolitan YMCA, Dept. of Psychology at Northeastern Illinois University and the Erikson Institute of Chicago. BROADER IMPACTS: The exhibition and accompanying materials have the potential to serve 1.8 million people over three years. In addition, CCM also will create a partnership of 20 museums and science centers based on parent involvement in children's museum experiences. The Informal Science Education field will be advanced through exploration of this model for integrating exhibition and program development with basic and applied educational research, accompanied by the application of visual documentation.
DATE:
-
TEAM MEMBERS:
Tsivia CohenJennifer FarringtonLouise Belmont-SkinnerRick GarmonJustine RobertsRon Davis
The Museum of Science will partner with four other informal science education institutions to plan a nationwide distributed research project that will explore universal access to informal learning of science, technology, engineering and mathematics (STEM) in museums. This planning project will determine domains of access-related research, establish a core set of advisors to assist with the development of the research agenda, coordinate the selection of topics for investigation and define areas where a shared research protocol might be appropriate for studies conducted at partner institutions. Research initially will be focused on visitors with disabilities who have traditionally been marginalized from many museum experiences.
Children's Discovery Museum of San Jose, CA, will develop a three-pronged project called "Round and Round" focused on the geometry, science and technology of circles and wheels. All three project products (one permanent and one traveling version of a 2000-sq. ft. exhibition; an array of complementary educational programs for children ages 3-10; and published research on patterns of interactions among families of diverse backgrounds in museum settings) will be developed in cooperation with developmental psychologists from the University of California at Santa Cruz and advisors from Latino and Vietnamese communities in San Jose. "Round and Round" exhibits and programs will offer a trans-cultural, gender-neutral, and multi-disciplinary look at the ingenuity and ubiquity of circles. Together they will provide a comprehensive array of interactive experiences that help children, ages 3-10, and adults explore the mathematics, physics, physical properties and engineering advantages of circles and wheels. The project is expected to serve three million visitors in science and children's museums across the nation within four years of implementation.