Skip to main content

Community Repository Search Results

resource project Community Outreach Programs
This NSF INCLUDES Design and Development Launch Pilot will improve math achievement among elementary school students of color in public schools in Albuquerque, New Mexico. Recognizing the need to coordinate efforts related to students' math and science achievement, key stakeholders formed the NM STEM Ecosystem, a dynamic network of cross-sector partners committed to making real impact on STEM education and degree attainment in Albuquerque. The NM STEM Ecosystem identified the math achievement gap between low-income students of color and their more economically-advantaged peers as the Broadening Participation (BP) Challenge it would address first. While math achievement gaps between students of color and Caucasian students appear nationally, the situation is particularly dire in New Mexico. In order to keep doors open to future STEM careers, it is crucial that learning pathways for math are articulated early and that these pathways honor families' cultural ways of knowing. The innovative strategy of Math Families & Communities Empowering Student Success (Math FACESS) is to use a collective impact approach to close the math achievement gap by connecting formal and informal STEM educators around a coherent, multi-faceted program of early mathematics teaching and learning that empowers parents and teachers to support children's mathematical development. Implementation of Math FACESS includes four major components: 1) Teachers at two pilot schools will participate in professional development related to Math Talk and Listening; 2) Parents at the pilot schools will participate in parent workshops and community-based activities focused on supporting their children's math achievement; 3) Project partners will implement community-based family activities organized around a theme of Twelve Months of Math; and 4) Ecosystem partners will study what worked and what didn't, in order to identify best practices that can be shared with system leaders to scale effective practices and increase impact.

The near-term objectives for Math FACESS are: 1) improve students' attitudes, practices, and achievement in math; 2) improve parents' attitudes, practices, and confidence in math and increase their utilization of family math resources; 3) improve data-sharing among partners related to math participation and achievement; and 4) create pathways within the Ecosystem for family math learning. The effectiveness of the collective impact model and impacts on partner organizations also will be assessed. Through the math FACESS Launch Pilot, the NM STEM Ecosystem plans to: 1) demonstrate the power of a collective impact social innovation framework to address a systemic community condition -- in this case, the math achievement gap; 2) contribute to theory-of-change research that demonstrates student achievement can be affected by working with parents and teachers; and 3) provide a model that values different ways of knowing and uses cultural context in the design of STEM learning opportunities for students, families, and schools.
DATE: -
TEAM MEMBERS: Joe Hastings Armelle Casau Obenshain Koren Kersti Tyson Angelo Gonzales
resource project K-12 Programs
Improving retention rates in postsecondary engineering degree programs is the single most effective approach for addressing the national shortage of skilled engineers. Both mathematics course placement and performance are strong graduation predictors in engineering, even after controlling for demographic characteristics. Underrepresented students (e.g., rural students, low-income students, first-generation students, and students of color) are disproportionately represented in cohorts that enter engineering programs not yet calculus-ready. Frequently, the time and cost of obtaining an engineering degree is increased, and the likelihood of obtaining the degree is also reduced. This educational problem is particularly acute for African American students who attended select high schools in South Carolina, with extremely high-poverty rates. As a result, the investigators proposed an NSF INCLUDES Launch Pilot project to develop a statewide consortium in South Carolina - comprising all of the public four-year institutions with ABET-approved engineering degree programs, all of the technical colleges, and 118 high schools with 70% or higher poverty rates, to pinpoint and address the barriers that prevent these students from being calculus ready in engineering.

This NSF INCLUDES Launch Pilot project will map completion/attrition pathways of students by collecting robust cross-sectional data to identify and understand the complex linkages between and behind critical decisions. Such data have not been available to this extent, especially focused on diverse populations. Further, by developing structural equation models (SEMs), the investigators will be able to build on extant research, contributing directly to understanding the relative impact of a range of latent variables on the development of engineering identity, particularly among African American, rural, low-income, and first-generation engineering students. Results of the pilot interventions are likely to contribute to the empirical and theoretical literature that focus on engineering persistence among underrepresented populations. Project plans also include developing a centralized database compatible to the Multiple Institution Database for Investigation of Engineering Longitudinal Development (MIDFIELD) project to share institutional data with K-12 and postsecondary administrators, engineering educators, and education researchers with NSF INCLUDES projects and beyond.
DATE: -
TEAM MEMBERS: Anand Gramopadhye Derek Brown Eliza Gallagher Kristin Frady
resource project Resource Centers and Networks
In this NSF INCLUDES Design and Development Launch Pilot the institutions of "Building on Strengths" propose to build and pilot the infrastructure, induction process, and early implementation of the Mathematician Affiliates of Color network. This network will consist of mathematicians of color from across academia and industry who want to invest time in, share their expertise with, and learn from students of color and their teachers. Building on Strengths will draw on basic needs cognitive theory to support these interactions and will focus narrowly on short and moderate term collaborations (from one month to a semester) between visiting mathematicians, students, and collaborating teachers that will involve three specific types of interactions: doing mathematics together as a habits-of-mind practice, talking about the discipline of mathematics and the experiences of mathematicians of color in that discipline, and relationship-building activities. The foundational infrastructure developed in the project will include systems for recruitment, selection and induction, a process for pairing affiliate mathematicians with classrooms, and support structures for the collaborations. To support the goals of the network a prototype virtual space will be developed in which real-time artifacts can be collected and shared from the classroom interactions. While Building on Strengths will pilot this program in the secondary context, once a viable model is established, scaling to K-16, as well as to other STEM fields, will be possible.

The research study in the project uses an exploratory sequential mixed-methods design and will be conducted in two phases. In the first, quantitative, phase of the study the following questions will be addressed: (1) Is the teacher-mathematician collaboration associated with a change for students in perception of basic human needs being met, mathematical or racial identities, or beliefs about mathematics or who can do mathematics? (2) Is the teacher-mathematician collaboration associated with a change for adults in perceptions of the role of basic needs or in adults' identities or beliefs about mathematics or who can do mathematics? In the second, qualitative, phase of the study, two types of interactions will be selected for in-depth qualitative study, identifying cases where groups of students experienced changes in their needs, identity, and beliefs. In this qualitative case-centered phase, the following questions will be explored: (1) What is the nature of the mentor-student interaction? (2) What aspects of the intervention do students feel are most relevant to them? (3) How did the implementation of the intervention differ from the anticipated intervention? The results of the study will help improve the infrastructure for, and better support the interactions between, mathematicians of color, students of color and their mathematics teachers; the outcomes will also shed light on how students experience their interactions.
DATE: -
TEAM MEMBERS: Michael Young Maisha Moses Albert Cuoco Eden Badertscher
resource project Professional Development and Workshops
This is an "Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science" (INCLUDES) Design and Development Launch Pilot that will implement a plan to assess the feasibility of a strategy designed to ensure high levels of improvement in K-12 grade students' mathematics achievement. The plan will focus on an often-neglected group of students--those who have been performing at the lowest quartile on state tests of mathematics, including African American, Hispanic, Native American, students with disabilities, and those segregated in urban and rural communities across the country. The project will draw on lessons learned from the nation's Civil Rights Movement and a community-organizing strategy learned during the struggle to achieve voting rights for African Americans. The Algebra Project (AP) is a national, nonprofit organization that uses mathematics as an organizing tool to ensure quality public school education for every child in America; it believes that every child has a right to a quality education to succeed in this technology-based society. AP's unique approach to school reform intentionally develops sustainable, student-centered models by building coalitions of stakeholders within the local communities, particularly the historically underserved populations. The AP works to change the deeply rooted social attitudes that encourage the disenfranchisement of a third of the nation's population. It delivers a multi-pronged approach to build demand for and support of quality public schools, including research and development, school development, and community development education reform efforts through K-12 initiatives.

The Algebra Project and the Young People's Project (YPP) will join efforts to bring together over 70 individuals and organizations, including 17 universities of which 8 are Historical Black Colleges and Universities, school districts, mathematics educators, and researchers to examine their experiences, and use collective learning to refine and hone strategies that they have piloted and tested to promote mathematics inclusion. The role of YPP in the proposed project will be to organize and facilitate the youth component, such that project activities reflect the language and culture of students, continuously leveraging and building upon their voice, creative input, and ongoing feedback. YPP will conduct workshops for students organized around math-based games that provide collective experiences in which student learning requires individual reflection, small group work, teamwork and discussion. The proposed work will comprise the design of effective learning opportunities; building and supporting a cadre of teachers who can effectively work with students learning under the proposed approach; using technologies to enhance teaching and learning; and utilizing evaluation and research to drive continuous improvement. Because bringing together an effective network with diverse expertise to collaborate towards national impact requires expert facilitation processes, the project will establish working groups around three major principles: (1) Organizing from the bottom up through students, their teachers, and others in local communities committed to their education, allied with individuals and organizations who have expertise and dedication for achieving the stated goals, can produce significant progress and the conditions for collective impact; (2) Effective learning materials and formal and informal learning opportunities in mathematics can be designed and implemented for students performing in the bottom academic quartile; and (3) Teachers and other educators can become more proficient and more confident in their capacity to produce students who are successful in learning the level of mathematics required for full participation in STEM. The working groups will also be tasked to consider two cross-cutting topics: (a) the communication structures and technologies needed to operate and expand the present network, and to create the "backbone" and other structures needed to operate and expand the network; and (b) the measurements and metrics for major needs, such as assessing students' mathematics literacy, socio-emotional development in specified areas; teachers' competencies; as well as the work of the network. The final product of this plan will be a "Theory of Collective Action and Strategic Plan". The plan will contain recommendations for collective actions needed in order for the current network to coordinate, add appropriate partners, develop the needed backbone structures, and become an NSF Alliance for national impact on the broadening participation challenge of improving the mathematics achievement. An external evaluator will conduct both formative and summative aspects of this process.
DATE: -
TEAM MEMBERS: Robert Moses Nell Cobb Gregory Budzban Maisha Moses William Crombie
resource project Museum and Science Center Programs
There is a growing need for citizens to be able to work with data and consider how data is represented. This work employs a design, make, play framework to create data modeling learning experiences for young children and their caregivers in an informal setting. The project develops and tests a curriculum for a workshop series for 5-8 year old children to engage them in playful exploration of data modeling. Children engage in data collection, data representation, and data analysis by drawing on their own experiences of museum exhibitions. The curriculum supports developing children's interest and engagement with data science and data literacy, which are foundational knowledge for a range of STEM careers and disciplines. This project advances efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM).

The project is grounded in a theoretical framework for young children's learning that focus on playful exploration, design, and building on children's own experiences and questions. The research examines how the curriculum needs to be designed to support families in data modeling, foster engagement in data modeling by both younger (ages 5-6) and older (ages 7-8) children, and provide evidence of active approaches to learning about STEM. The design and development project tests and investigates the materials using a design-based research framework. Children who participate in the workshop series should increase their confidence in solving problems, taking initiative, and drawing on available resources to pursue their own questions and respond to novel challenges. Data collected includes interviews with participants, artifacts of children's work throughout the series, and an observational instrument to document families' problem solving, persistence, and engagement with data science concepts.
DATE: -
TEAM MEMBERS: Katherine McMillan Culp ChangChia James Liu Janella Watson Delia Meza Kaitlin Donnelly Susan Letourneau Laycca Umer Catherine Cramer Stephen Uzzo John Archacki
resource research Public Programs
The Montana Girls STEM Collaborative brings together organizations and individuals throughout Montana who are committed to informing and motivating girls to pursue careers in STEM – Science, Technology, Engineering and Mathematics. The Collaborative offers professional development, networking and collaboration opportunities to adults who offer and/or support STEM programs for girls and other youth typically under-represented in STEM. The vision of Montana Girls STEM is that every young person in Montana has the opportunity to learn about STEM careers and feels welcome pursuing any dream they
DATE:
TEAM MEMBERS: Suzi Taylor Ray Callaway Cathy Witlock
resource research Museum and Science Center Programs
Staff facilitators in museums and science centers are a critical but often overlooked component of the visitor experience. Despite assertions about the important role they play in visitor learning, there continues to be almost no research to understand staff facilitation in these settings or identify effective practices. To address these gaps, we conducted a design-based research study to describe the work of experienced museum educators and iteratively refine a model of staff facilitation to support family learning at interactive math exhibits developed through a prior project. The resulting
DATE:
resource project Exhibitions
As the world is increasingly dependent upon computing and computational processes associated with data analysis, it is essential to gain a better understanding of the visualization technologies that are used to make meaning of massive scientific data. It is also essential that the infrastructure, the very means by which technologies are developed for improving the public's engagement in science itself, be better understood. Thus, this AISL Innovations in Development project will address the critical need for the public to learn how to interpret and understand highly complex and visualized scientific data. The project will design, develop and study a new technology platform, xMacroscope, as a learning tool that will allow visitors at the Science Museum of Minnesota and the Center of Science and Industry, to create, view, understand, and interact with different data sets using diverse visualization types. The xMacroscope will support rapid research prototyping of public experiences at selected exhibits, such as collecting data on a runner's speed and height and the visualized representation of such data. The xMacroscope will provide research opportunities for exhibit designers, education researchers, and learning scientists to study diverse audiences at science centers in order to understand how learning about data through the xMacroscope tool may inform definitions of data literacy. The research will advance the state of the art in visualization technology, which will have broad implications for teaching and learning of scientific data in both informal and formal learning environments. The project will lead to better understanding by science centers on how to present data to the public more effectively through visualizations that are based upon massive amounts of data. Technology results and research findings will be disseminated broadly through professional publications and presentations at science, education, and technology conferences. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project is driven by the assumption that in the digital information age, being able to create and interpret data visualizations is an important literacy for the public. The research will seek to define, measure, and advance data visualization literacy. The project will engage the public in using the xMacrocope at the Science Museum of Minnesota and at the Center of Science and Industry's (COSI) science museum and research center in Columbus, Ohio. In both museum settings the public will interact with different datasets and diverse types of visualizations. Using the xMacroscope platform, personal attributes and capabilities will be measured and personalized data visualizations will be constructed. Existing theories of learning (constructivist and constructionist) will be extended to capture the learning and use of data visualization literacy. In addition, the project team will conduct a meta-review related to different types of literacy and will produce a definition with performance measures to assess data visualization literacy - currently broadly defined in the project as the ability to read, understand, and create data visualizations. The research has potential for significant impact in the field of science and technology education and education research on visual learning. It will further our understanding of the nature of data visualization literacy learning and define opportunities for visualizing data in ways that are both personally and culturally meaningful. The project expects to advance the understanding of the role of personalization in the learning process using iterative design-based research methodologies to advance both theory and practice in informal learning settings. An iterative design process will be applied for addressing the research questions by correlating visualizations to individual actions and contributions, exploring meaning-making studies of visualization construction, and testing the xMacroscope under various conditions of crowdedness and busyness in a museum context. The evaluation plan is based upon a logic model and the evaluation will iteratively inform the direction, process, and productivity of the project.
DATE: -
TEAM MEMBERS: Katy Borner Kylie Peppler Bryan Kennedy Stephen Uzzo Joe E Heimlich
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The goal of this project is to make 21st century quantum science comprehensible and engaging to non-expert informal adult learners. This project has strong potential to add new knowledge about the public's perception and understanding of quantum physics. This scientific content is often difficult for informal audiences to grasp, and there are relatively few accessible learning resources for a non- professional audience. The development of this online, interactive resource with short animations, graphics, and simulations has strong potential to fill this gap. It will develop a visually driven online resource to engage non-expert audiences in understanding the basics of quantum physics. The web design will be modular, incorporating many multimedia elements and the structure will be flexible allowing for future expansion. All content would be freely available for educational use. There is potential for extensive reach and use of the resources by informal adult learners online as well as learners in museums, science centers, and schools. Project partners are the Joint Quantum Institute at the University of Maryland and the National Institute of Standards and Technology, College Park. An independent evaluation of the project will add new knowledge about informal learners' perceptions and/or knowledge about quantum science and technology. An initial needs assessment via focus groups with the general public will be designed to find out more about what they already know about quantum physics topics and terminology, as well as what they want to know and what formats they prefer (games, simulations, podcasts, etc.). In person user testing will be used with early versions of the project online resource using a structured think-aloud protocol. Later in year 1 and 2, online focus groups with the general public will be conducted to learn what they find engaging and what they learned from the content. Iterative feedback from participants during the formative stage will guide the development of the content and format of the online resources. The Summative Evaluation will gather data using a retrospective post-survey embedded with a pop-up link on the Atlas followed by interviews with a subset of online users. Google Analytics will be used to determine the breadth and depth of their online navigation, what resources they download, and what websites they visit afterward. A post-only survey of undergraduate and graduate students who participated in resource development will focus on changes in students' confidence around their science communication skills and level of quantum physics understanding.
DATE: -
TEAM MEMBERS: Emily Edwards Curtis Suplee
resource project Media and Technology
WNET, working with Education Development Center, will lead a small scale Innovations in Development effort to develop, research, and evaluate a new model to engage underserved families in STEM learning. The new endeavor, Cyberchase: Mobile Adventures in STEM, will build on the proven impact of the public media mathematics series Cyberchase and the growing potential of mobile technology and texting to reach underserved parents. WNET will produce two new Cyberchase episodes for 6-9 year olds, focused on using math to learn about the environment. Drawing on these videos and an existing Cyberchase game, the team will produce a bilingual family engagement campaign that will combine an in-person workshop followed by a 6-8 week "text to parent" campaign, in which parents receive weekly text messages suggesting family STEM activities related to the media content. The engagement model will be piloted in three cities with large low-income/Latino populations, along with one texting campaign offered without the workshop. This project will build knowledge about how to deploy well-designed public media assets and text messaging to promote fun, effective STEM learning interactions in low-income families. While past research on educational STEM media has tended to focus on children, especially preschool age, this project will focus primarily on text messaging for parents, and on learners age 6-9, and the wider scope of parent/child STEM interactions possible at that age.

The primary goal of the project will be to develop, test and refine a family engagement model that includes a face-to-face workshop, rich narrative Cyberchase content, and text-message prompts for parents to engage in short, playful STEM activities with children. The project team will explore which features of the mobile text-and-media program have most value for low-income and Latino families and prompt STEM learning interactions, including a comparison of workshop-based and text-only variants. The project will have three phases: needs assessment and preliminary design; an early-stage test in New York and development and testing of media; and three late-stage tests in contrasting locations, two including workshops and one "text-only," and analysis of findings. Ultimately, the project will share knowledge with the field about the opportunities and challenges of using mobile texting and public media to reach underserved families effectively. This knowledge will also inform a future proposal for production and outcomes research, which, based on the study results, may include a scaled-up version in ten locations and a ten-city Randomized Control Test. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Sandra Sheppard Bill Tally
resource project Informal/Formal Connections
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This Research in Service to Practice project will address the issues around Informal Education of rural middle school students who have high potential regarding academic success in efforts to promote computer and IT knowledge, advanced quantitative knowledge, and STEM skills. Ten school districts in rural Iowa will be chosen for this study. It is anticipated that new knowledge on rural informal education will be generated to benefit the Nation's workforce. The specific objectives are to understand how informal STEM learning shapes the academic and psychosocial outcomes of rural, high-potential students, and to identify key characteristics of successful informal STEM learning environments for rural, high-potential students and their teachers. The results of this project will provide new tools for educators to increase the flow of underserved students into STEM from economically-disadvantaged rural settings.

The President's Council of Advisors on Science and Technology predicts a rapid rise in the number of STEM jobs available in the next decade, describing an urgent need for students' educational opportunities to prepare them for this workforce. In 2014, 62% of CEOs of major US corporations reported challenges filling positions requiring advanced computer and information technology knowledge. The project team will use a mixed methods approach, integrating comparative case study and mixed effects longitudinal methods, to study the Excellence program. Data sources include teacher interviews, classroom observations, and student assessments of academic aptitude and psychosocial outcomes. The analysis and evaluation of the program will be grounded in understanding the local efforts of school districts to build curriculum responsive to the demands of their high-potential student body. The project design, and subsequent analysis plan, utilizes a mixed methods approach, incorporating case study and longitudinal quantitative methods to analyze naturalistic data and build robust evidence for the implementation and impact of this program. This project will provide significant insights in how best to design, implement, and support informal out-of-school learning environments to broaden participation in the highest levels of STEM education and careers for under-resourced rural students.
DATE: -
TEAM MEMBERS: Susan Assouline
resource research Exhibitions
Educators have been increasingly interested in teaching mathematics in informal settings. However, there is little research on the actual learning outcomes of out-of-school mathematics instruction or the role of interest in explaining the outcomes. In this study, 793 12-year-old pupils were taken into a science center mathematics exhibition in Latvia and Sweden, measuring their prior knowledge of the contents of the exhibition, general cognitive competences and individual interest in school mathematics before the visit, and their situational interest and learning outcomes after the exhibition
DATE:
TEAM MEMBERS: Mari-Pauliina Vainikainen Hannu Salmi Helena Thuneberg