This document is the final evaluation report for the project, which focuses both on formative evaluation of the collaborative+interdisciplinary presentation creation process and summative evaluation of audience learning outcomes.
In 2019, the Advancing Informal STEM Learning program at the National Science Foundation funded the Advancing Ocean Science Literacy through Immersive Virtual Reality project, a pilot/feasibility and collaborative research project between The Hydrous and the Virtual Human Interaction Lab (VHIL) at Stanford University designed to investigate how immersive virtual reality using head mounted displays can enhance ocean literacy and generate empathy towards environmental issues, particularly among high school girls from different socio-economic backgrounds. The Hydrous was responsible for designing
This poster was presented at the 2021 NSF AISL Awardee Meeting.
Collaborative robots – cobots – are designed to work with humans, not replace them. What learning affordances are created in educational games when learners program robots to assist them in a game instead of being the game? What game designs work best?
This NOVA multiplatform media initiative consisted of a 2-hour nationally broadcast PBS documentary, Polar Extremes; a 10-part original digital series, Antarctic Extremes; an interactive game, Polar Lab; accompanying polar-themed digital shorts, radio stories, text reporting, and social media content; a collection of educational resources on PBS LearningMedia; and community screening events and virtual field trips for science classrooms. Across multiple media platforms the project’s video content had nearly 13 million views.
The research explored the potential for informal STEM learning
This Smart and Connected Community (SCC) project will partner with two rural communities to develop STEMports, an innovative Science, Technology, Engineering and Mathematics (STEM) learning game for workforce development. The game's activities will take players on localized Augmented Reality (AR) missions to both engage in STEM learning challenges and discover emerging STEM careers in their community, specifically highlighting innovations in the fields of sustainable agriculture and aquaculture, forest products, and renewable energy. Community Advisory Teams (CATs) and co-design teams, including youth, representatives from the targeted emerging STEM economies, and decision-makers will partner with project staff to co-design STEMports that reflect the interests, cultural contexts, and envisioned STEM industries of the future for each community.
The project will: (a) design and pilot an AR game for community STEM workforce development; (b) develop and adapt a community engagement process that optimizes community networking for co-designing the gaming application and online community; and (c) advance a scalable process for wider applications of STEMports. This project is a collaboration between the Maine Mathematics and Science Alliance and the Field Day Lab at the University of Wisconsin-Madison to both build and research the co-designing of a SCC based within an AR environment. The project will contribute knowledge to the informal STEM learning, community development, and education technology fields in four major ways:
Deepening the understanding of how innovative technological tools support rural community STEM knowledge building as well as STEM identity and workforce interest.
Identifying design principles for co-designing the STEMports community related to the technological design process.
Developing social network approaches and analytics to better understand the social dimensions and community connections fostered by the STEMport community.
Understanding how participants' online and offline interactions with individuals and experiences builds networks and knowledge within a SCC.
With the scaling of use by an ever-growing community of players, STEMports will provide a new AR-based genre of public participation in STEM and collective decision making. The research findings will add to the emerging literature on community-wide education, innovative education technologies, informal STEM learning (especially place-based learning and STEM ecosystems), and participatory design research.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Robots and robotics excite and challenge youths and adults. Unfortunately, the cost of purchasing robots or building useful robots is prohibitive for many low resource individuals and groups. This project will relieve this expense and provide an opportunity for resource limited individuals to experience the thrilling aspects of robotics by building a computer game that simulates robotic action. This project uses co-robotics wherein the participating player programs an avatar to assist in a symbiotic manner to achieve the goals of the game and participant. The game will provide access to the ideas and concepts such as programing, computational thinking and role assumption. The overarching goals are (1) to engage low-resource learners in STEM education through robotics in out-of-school spaces, and (2) to update the field of robotics-base STEM education to integrate the co-robotics paradigm.
This project is designed to gain knowledge on how co-robotics can be used in the informal education sector to facilitate the integration of computational science with STEM topics and to expand the educational use of co-robotics. Because the concept of co-robotics is new, a designed-based research approach will be used to build theoretical knowledge and knowledge of effective interventions for helping participants learn programing and computational thinking. Data will be collected from several sources including surveys, self-reports, in game surveys, pre and post-tests. These data collection efforts will address the following areas: Technology reliability, Resolution of cognitive tension around co-play, Accelerate discovery and initial engagement, Foster role-taking and interdependence with co-robots, Investigate social learning, and Validate measures using item response theory analysis. The DBR study questions are:
1.What design principles support the development of P3Gs that can effectively attract initial engagement in a free-choice OST space that offers large numbers of competing options? 2.What design principles support a P3G gameplay loop that enables learning of complex skills, computational thinking and co-robotics norms, and building of individual and career interest over the course of repeated engagement?
3.What design principles support P3Gs in attaining a high rate of re-engagement within low-resource OST settings? 4.What kinds of positive impact can P3Gs have on their proximal and distal environment? In addition, the project will research these questions about design: 1.What technical and game design features are needed to accommodate technological interruption? 2.What design elements or principles mitigate competition for cognitive resources between real-time play and understanding the co-robotic's behavior in relation to the code the player wrote for it? 3.What design elements are effective at getting learners in OST settings to notice and start playing the game? 4.What designs are effective at encouraging learners to engage with challenging content, particularly the transition from manual play to co-play? 5.What design elements help players develop a stake in the role the game offers? 6.What social behaviors emerge organically around a P3G prototype that is not designed to evoke specific social interactions?
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
This CAISE report is designed to track and characterize sector growth, change and impact, important publications, hot topics/trends, new players, funding, and other related areas in Informal STEM Education (ISE) in 2017. The goal is to provide information and links for use by ISE professionals, science communicators, and interested stakeholders who want to discover new strategies and potential collaborators for project and proposal development. Designed as a slide presentation and divided into sectors, it can be used modularly or as a complete report. Each sector reports on research, events
EMERGE in STEM (Education for Minorities to Effectively Raise Graduation and Employment in STEM) is a NSF INCLUDES Design and Development Launch Pilot. This project addresses the broadening participation challenge of increasing participation of women, the at-risk minority population, and the deaf in the STEM workforce. The project incorporates in and out-of-school career awareness activities for grades 4-12 in a high poverty community in Guilford County, North Carolina. EMERGE in STEM brings together a constellation of existing community partners from all three sectors (public, private, government) to leverage and expand mutually reinforcing STEM career awareness and workforce development activities in new ways by using a collective impact approach.
This project builds on a local network to infuse career exposure elements into the existing mutually reinforcing STEM activities and interventions in the community. A STEM education and career exposure software, Learning Blade, will be used to reach approximately 15,000 students. A shared measurement system and assessment process will contribute to the evaluation of the effectiveness of the collective impact strategies, the implementation of mutually reinforcing activities across the partnership and the extent to which project efforts attract students to consider STEM careers.
DATE:
-
TEAM MEMBERS:
Gregory MontyMargaret KanipesMalcolm SchugSteven Jiang
Becoming computationally literate is increasingly crucial to everyday life and to expanding workforce capacity. Research suggests that computational literacy--knowing what, when, how, and why to use the ideas of computer science, in combination with the capacity to view problems and potential solutions through the lens of computational structures and procedures--can be supported through digital game play. This project aims to develop a social and creative exhibit game that foregrounds aspects of computer science, specifically artificial intelligence (AI) and computer programming, in ways that enable youth to explore, construct, and share computational complex systems content with one another and other museum visitors. To play the game, pairs of youth visitors will use code cards to program the behavior of AI animals in a virtual forest. As they do so, youth will engage with computational literacy practices, such as basic computer programming, describing their computational ideas, and doing computational problem solving with their friends. Their activity will be projected on a large screen as a strategy for enabling youth to test, rehearse, and communicate their computational ideas and to also interest other visitors into computational problem solving.
Using multi-perspective and iterative design-based research, university learning scientists, museum practitioners, and game developers will pursue research questions around how science museums can better engage youth who are traditionally underrepresented in computer science in complex computational practices. Data sources will include interactive-log data, observations of visitor interactions with the game, visitor interviews, and visitor surveys. A multimodal and mixed methods approach that searches for convergences between qualitative analysis, quantitative analysis, and learning analytics will be used to generate research findings. Changes in computational literacy will be assessed by evaluating what problems visitors choose to solve with programming, how they frame those problems, and their selections from among possible solutions, what they program, how they program, and how they describe programming ideas. The results of this project will include: 1) a social, interactive gameplay experience that supports the development of computational literacy; 2) design principles for game-based exhibits that facilitate development of computational literacy; and 3) new knowledge of variations in design and gameplay across diverse gameplay users, including those from underrepresented groups in computer science. It is anticipated that 1,000 museum youth visitors will directly participate in the study.
This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE:
-
TEAM MEMBERS:
Matthew BerlandLeilah LyonsMatthew Cannady
In this project, education researchers, environmental scientists, and educators will develop a computer tool to let STEM educators and curriculum developers build local environmental science models. The system will use data about land use to automatically construct map-based simulations of any area in the United States. Users will be able to choose from a range of environmental and economic issues to include in these models. The system will create simulations that ask students to change to patterns of land use -- for example, increasing land zoned for housing, or open land, or industrial development -- to try to meet environmental and social goals. As a result, students will be able to learn about the interaction of environmental and economic issues relevant to their own city, town, neighborhood, or region. These map-based simulations will be incorporated into an existing science, technology, engineering, and mathematics (STEM) education tool, Land Science, in which learners work in a fictional planning office to study how zoning affects economic and environmental issues in a community. Research has shown that Land Science is mode effective when learners are exploring issues in an area near their home, and the current study will investigate how and why local simulations improve environmental science learning. This project is funded by the Advancing Informal STEM Learning (AISL) program which supports work to enhance learning in informal environments by funding innovative research, approaches, and resources for use in a variety of settings.
In this project, the research team will build, test, and deploy a toolkit that will allow informal STEM educators and developers of informal STEM programming to easily adapt an existing environmental science learning environment, which consists of a place-based virtual internship in urban planning and ecology, to their local contexts, learning objectives, and learner populations. Land Science is a virtual internship in which young people explore the environmental and socio-economic impacts of land-use decisions. To do so, they play the role of interns at an urban planning firm developing a new land-use proposal for the city of Lowell, Massachusetts: they read reports, virtually visit sites, determine stakeholder priorities, and use a geographic information system (GIS) model to evaluate the socio-economic and environmental impacts of land-use choices. No one plan can satisfy all stakeholders, so learners must compromise to create an effective plan and justify their decisions. Land Science has been shown to improve civic engagement, interest in eco-social issues, and understanding of scientific models, but it is most effective when the location of the virtual internship is in or near the learners' home town. To improve the accessibility and impact of this effective learning intervention, the interdisciplinary research team, which includes learning scientists, land-use experts, and informal STEM educators, will develop a Local Environmental Modeling toolkit, which will allow educators to change the location of the simulation and the stakeholder groups, zoning codes, and environmental and socio-economic indicators included in the land-use model. The system will ensure that the model produced is functional, realistic, and appropriately complex. The localized versions of Land Science produced by informal STEM educators will be used in a range of contexts and locations, allowing the research team to study the effects of an online, place-based learning intervention on environmental science learning, STEM interest and motivation, and civic engagement.
DATE:
-
TEAM MEMBERS:
David ShafferKristen ScopinichHolly GibbsJeffrey Linderoth
The project will advance efforts by the American Association for the Advancement of Science and the Institute for Learning Innovation to bring together young adults from communities historically underrepresented in science, technology, engineering, and mathematics (STEM) to collaboratively conduct scientifically driven challenges embedded in a mobile learning tool based upon the AAAS Active Explorer platform. The project will be conducted at the Washington National Mall, San Francisco National Golden Gate Park, and the Boston Harbor Islands National Recreation Area, and will study how a mobile technology used in these settings can facilitate learner engagement in science content; how it can affect young adults' engagement in science-learning processes; and whether interest in learning science and technology has been furthered. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments, including pathways for broadening access to STEM learning experiences and advancing research STEM learning. Research questions will investigate science learning inequalities by addressing how place-based augmented reality games can connect young adults to scientific practices, including observing science phenomena, analyzing data, and communicating findings; how young adults develop science skills related to their science self-efficacy through participation in augmented reality science exploration; and how mobile technologies and gaming can serve as mediators that enable young adults to improve their science identity. In addition to engaging young adults in science activities at the National Parks and increasing their science skills, the project will provide valuable information to National Park staff and scientists to assist them in designing effective tools, resources and experiences to better engage young adults. Research teams will collect data in the form of digital ethnography, focus groups, activity reports, artifacts, and surveys. The project will document learning and engagement through mobile technology in three urban national parks that will involve 60 young adults at each location, and will create innovative measurement tools to monitor how informal settings can leverage the intersections of the arts and sciences to support student engagement and learning.