The New Jersey Historical Commission (NJHC) initiated the Understanding Communities Study with the goal to better understand how New Jersey history and history organizations can be more inclusive for all. NJHC contracted RK&A for the first phase of the study to conduct focus groups with members of Hispanic and Latino communities in New Jersey. NJHC plans to expand the study to other communities in the future. The New Jersey Center for Hispanic Policy, Research and Development served as advisors in the project.
With support from NJHC partners, RK&A conducted three focus groups with
The National Building Museum contracted RK&A to conduct an evaluation Investigating Where We Live (IWWL), a long-running program that has brought together creative youth in the Washington, D.C. area every summer since 1996 to explore, document, and interpret the local built environment. The study goal was to examine program strengths and challenges to help NBM strategically plan for the program’s future.
How did we approach this study?
To hear a variety of perspectives on the program, RK&A conducted in-depth telephone interviews with a number of stakeholders with different
This project will produce a four-part mini-series on African American Language (AAL) designed for television broadcast as well as for formal and informal public educational distribution. This mini-series addresses the social, cultural, and educational issues related to the most prominent, the most controversial, and the most misunderstood dialect in the history of American English--African American Language. Dialect prejudice, linguistic profiling, and language-based discrimination continue to be "so commonly accepted, so widely perceived as appropriate, that it must be seen as the last back door to discrimination. And the door is still wide open" (Lippi-Green 2012:73). By presenting the history, development, diversity, and symbolic role of language in the lives of African Americans, this documentary series helps to counteract the persistent misinformation and misinterpretation circulated about the language of African Americans. The series builds on the popular public reception to the one-hour documentary, Talking Black in America: The Story of African American Language, and includes the following episodes: 1) the historical and contemporary development of African American Language; 2) the diversity of language use among African Americans based on region, age, status, education, and style; 3) the use of language in expressive performance, including preaching, comedy, music, hip hop, spoken word, and other expressive genres; and 4) the role of language differences in educational achievement. A website accompanying the series will include a variety of educational resources, including streaming, discursive chapters with integrated vignettes from the episodes, additional commentary and background, activities, and discussion questions for each episode, with further online materials for education. The documentary and accompanying activities constitute an important milestone in the effort to educate the public about language diversity in American society.
No dialect in the history of American English has been more prominent, more controversial, and more misunderstood than African American Language, and dialect prejudice, linguistic profiling, and language discrimination still intensely affect speakers of this variety. By presenting the history, development, diversity, and symbolic role of language in the lives of African Americans, this documentary series will help to counteract the persistent misinformation circulated about African American Language. This series and the accompanying online materials offer an important milestone in the effort to educate the public about language diversity that can help to reduce linguistic discrimination in American society.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.
The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
Research that seeks to understand classroom interactions often relies on video recordings of classrooms so that researchers can document and analyze what teachers and students are doing in the learning environment. When studies are large scale, this analysis is challenging in part because it is time-consuming to review and code large quantities of video. For example, hundreds of hours of videotaped interaction between students working in an after-school program for advancing computational thinking and engineering learning for Latino/a students. This project is exploring the use of computer-assisted methods for video analysis to support manual coding by researchers. The project is adapting procedures used for computer-aided diagnosis systems for medical systems. The computer-assisted process creates summaries that can then be used by researchers to identify critical events and to describe patterns of activities in the classroom such as students talking to each other or writing during a small group project. Creating the summaries requires analyzing video for facial recognition, motion, color and object identification. The project will investigate what parts of student participation and teaching can be analyzed using computer-assisted video analysis. This project is supported by NSF's EHR Core Research (ECR) program, the STEM+C program and the AISL program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field. The project is funded by the STEM+Computing program, which seeks to address emerging challenges in computational STEM areas through the applied integration of computational thinking and computing activities within disciplinary STEM teaching and learning in early childhood education through high school (preK-12). As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
The video analysis systems will provide video summarizations for specific activities which will allow researchers to use these results to quantify student participation and document teaching practices that support student learning. This will support the analysis of large volumes of video data that are often time-consuming to analyze. The video analysis system will identify objects in the scene and then use measures of distances between objects and other tracking methods to code different activities (e.g., typing, talking, interaction between the student and a facilitator). The two groups of research questions are as follows. (1) How can human review of digital videos benefit from computer-assisted video analysis methods? Which aspects of video summarization (e.g., detected activities) can help reduce the time it takes to review the videos? Beyond audio analytics, what types of future research in video summarization can help reduce the time that it takes to review videos? (2) How can we quantify student participation using computer-assisted video analysis methods? What aspects of student participation can be accurately measures by computer-assisted video analysis methods? The video to be used for this study is drawn from a project focused on engineering and computational thinking learning for Latino/a students in an after-school setting. Hundreds of hours of video are available to be reviewed and analyzed to design and refine the system. The resulting coding will also help document patterns of engagement in the learning environment.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Marios PattichisSylvia Celedon-PattichisCarlos LopezLeiva
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by engaging in hands-on field experience, laboratory/project-based entrepreneurship tasks and mentorship experiences.
Twin Cities Public Television project on Gender Equitable Teaching Practices in Career and Technical Education Pathways for High School Girls is designed to help career and technical education educators and guidance counselors recruit and retain more high school girls from diverse backgrounds in science, technology, engineering and math (STEM) pathways, specifically in technology and engineering. The project's goals are: 1) To increase the number of high school girls, including ethnic minorities, recruited and retained in traditionally male -STEM pathways; 2) To enhance the teaching and coaching practices of Career and Technical Education educators, counselors and role models with gender equitable and culturally responsive strategies; 3) To research the impacts of strategies and role model experiences on girls' interest in STEM careers; 4) To evaluate the effectiveness of training in these strategies for educators, counselors and role models; and 5) To develop training that can easily be scaled up to reach a much larger audience. The research hypothesis is that girls will develop more positive STEM identities and interests when their educators employ research-based, gender-equitable and culturally responsive teaching practices enhanced with female STEM role models. Instructional modules and media-based online resources for Minnesota high school Career and Technical Education programs will be developed in the Twin Cities of Minneapolis and St. Paul and piloted in districts with strong community college and industry partnerships. Twin Cities Public Television will partner with STEM and gender equity researchers from St. Catherine University in St. Paul, the National Girls Collaborative, the University of Colorado-Boulder (CU-Boulder), the Minnesota Department of Education and the Minnesota State Colleges and Universities System.
The project will examine girls' personal experiences with equitable strategies embedded into classroom STEM content and complementary mentoring experiences, both live and video-based. It will explore how these experiences contribute to girls' STEM-related identity construction against gender-based stereotypes. It will also determine the extent girls' exposure to female STEM role models impact their Career and Technical Education studies and STEM career aspirations. The study will employ and examine short-form autobiographical videos created and shared by participating girls to gain insight into their STEM classroom and role model experiences. Empowering girls to respond to the ways their Career and Technical Education educators and guidance counselors guide them toward technology and engineering careers will provide a valuable perspective on educational practice and advance the STEM education field.
K-12 informal engineering education can support student confidence, interest, and awareness of the field of engineering. Studies have suggested that K-12 informal learning can influence students’ awareness of the fields of engineering as potential career opportunities. Researchers have also found that engineering activities outside of school can engage youth in disciplines of which they are unfamiliar because of a lack of engineering opportunity in K12 formal education. In this paper, we provide a rich case study of one lesson’s implementation in a 5th-6th grade girls afterschool program. Our
The Rural Informal STEM Conference (RISC), sponsored by the National Science Foundation (NSF) and held at its headquarters on September 13–14, 2018, was the first of its kind to bring together key innovators and experts in rural STEM learning outside of school. People who live in rural settings are a frequently overlooked and significantly under-represented STEM audience, who number roughly 60 million Americans.
The conference addressed questions about the overall status of informal (out of school) STEM learning in rural places, including the following: How do we define rural places? What
This report summarizes the ideas and conversations of the CAISE Broadening Participation Task Force, which was led by the authors, along with James Bell, Principal Investigator and project director of CAISE (see informalscience.org/bp-task-force). The task force was instrumental in identifying key ideas and challenges to the field, providing edits and input into the report, developing and drafting the associated practice briefs, and piloting the materials.
Across the nation, many are undertaking efforts to significantly transform who participates in science, technology, engineering, and
This annual report presents an overview of Saint Louis Science Center audience data gathered through a variety of evaluation studies conducted during 2017. This report includes information on the Science Center's general public audience demographics and visitation patterns, gives an overview of visitors' comments about their Science Center experience, summarizes major trends observed in the Science Center's tool for tracking educational programs, and presents highlights from front-end evaluation on the topic of infrastructures and summative evaluation of the GROW exhibition.
Ruff Family Science is a project funded by the National Science Foundation (NSF) that aims to foster joint media engagement and hands-on science exploration among diverse, low-income parents and their 4- to 8-year-old children. Building on the success of the PBS series FETCH! with Ruff Ruffman, the project leverages FETCH’s funny and charismatic animated host, along with its proven approach to teaching science, to inspire educationally disadvantaged families to explore science together. The project is utilizing a research and design process to create resources that meet the needs of families
This Conference Paper was presented at the International Soceity for the Learning Sciences Confernece in June 2018. We summarize interviews with youth ages 9-15 about their failure mindsets, and if those midsets cross boundaries between learning environments.
Previous research on youth’s perceptions and reactions to failure established a view of failure as a negative, debilitating experience for youth, yet STEM and in particular making programs increasingly promote a pedagogy of failures as productive learning experiences. Looking to unpack perceptions of failure across contexts and