The National Center for Interactive Learning (NCIL) at the Space Science Institute (SSI), in collaboration with the Colorado Clinical and Translational Studies Institute (CTSCI), and Colorado Area Health Education Centers (AHECs), requests support for Discover Health/Descubre la Salud (DH/DS). The bilingual (English/Spanish) project will include an interactive library exhibit supported by media and community education resources to engage underserved communities in learning about their cardiovascular and digestive systems, and how to keep them healthy. The project will target underserved communities, including rural and Latino communities, working through libraries and community institutions. The project will use a strategic combination of bilingual, interactive exhibits presented at libraries and community health fairs and festivals, career events, family nights, science camps, and mini-med schools, to engage students, families, and adults in these important health issues. Project PI Robert Russell, Senior Education Associate at NCIL, and NCIL Founder Co-PI Dusenbery, Founder of NCIL, will direct the project. Dr. Jack Westfall, who will direct the Community Engagement Core of CCTSI and also directs Colorado AHECS, he will direct their subaward. An outstanding advisory committee includes biomedical researchers, community health educators, librarians, and informal science educators. They will provide expertise on biomedical science content and help guide the project's implementation. Knight Williams, Inc., a highly experienced media and community evaluation firm, will conduct the full required project evaluation.
The Self-Reliance Foundation (SRF) Conociendo Tu Cuerpo (Know Your Body) Hispanic Community Health Sciences Education project is an initiative designed to introduce Hispanic students and families to biomedical science and health education resources, and increase their participation levels in these fields. The educational goals of the project are to: (1) Encourage Hispanic undergraduate students to pursue careers in biomedicine and science through a mentoring program at the university level; (2) Inspire an interest in biomedical science among Hispanic elementary-age students and parents through community outreach activities; (3) Inform Hispanic parents about biomedical science education standards and academic requirements for pursuing biomedical and science related careers; and (4) Inform and inspire Hispanic students and their families about the biomedical sciences and related careers through a series of daily nationally broadcast Spanish-language radio capsules, and a nationally syndicated Spanish newspaper column. Conociendo Tu Cuerpo (Know Your Body) includes several key components: A model, Washington, D.C., area coalition of informal science, health, community, education, and media organizations that will publicize and provide hands-on health science activities at community festivals and other community settings; Hispanic undergraduate student health-science fellows to be trained and provided experience in facilitating health science activities; and nationally broadcast Spanish-language radio capsules that will cover topics in areas of biomedicine, research, education, and health-science careers. Parents and students will be able to access additional information about biomedical science opportunities and Hispanic role models in the biomedical sciences through the project's Conociendo Tu Cuerpo website and the bilingual 800 telephone help line promoted by 147 participating radio stations and 102 newspapers nationwide. The project will be supported at the national level through collaboration with the Hispanic Radio Network and the Pacific Science Center. The Washington, D.C., collaborative will include the Capital Children's Museum, local Spanish language radio stations, area universities, and health and community organizations. Development Associates, the largest American education and evaluation consulting corporation, will evaluate the project.
Adolescents face many conflicting messages and influences related to high-risk behavior. Choices confronting middle school students often have the potential for adverse effects on their overall health and well being. Montshire Museum proposes to develop an educational outreach program to allow students an opportunity to learn about key health issues in a context that is based on high-quality research and offers hands-on inquiry and self-directed investigations. The proposed educational outreach program will serve students in grades 5-8 in rural Vermont and New Hampshire schools. The project team will create four health education modules, each one related to current NIH-supported research by faculty at Dartmouth Medical School (DMS). DMS researchers will collaborate with Montshire Museum's science educators in developing the modules, connecting with students and teachers, and providing support for all aspects of the project. For each module, the project team will support hands-on classroom investigations and independent research using materials, objects and exhibits developed specifically for the program. In addition, professional development institutes for middle school health and science educators will provide science content and instructional strategies needed to successfully implement health science lessons that are aligned with national and state standards for health and science education. The curriculum materials developed for school-based programming also create opportunities for broader public outreach. Montshire's educators will adapt them for special family activities and presentations within the museum setting. The educational curriculum will be designed to provide all participants with information that will assist in making personal health decisions in the subject areas; raise participants' awareness of the ways that culture and media affect their choices; and expose participants to the interesting and relevant research taking place locally, while increasing their understanding of the diversity of health science careers and research processes. A thorough process of formative and summative evaluation will enable the project team to take an iterative approach to curriculum development and to provide the best possible learning experience for participants.
The Miami Museum of Science, in collaboration with University of Miami's (UM) School of Medicine, is requesting a Phase II grant to support national replication of the Biomedical Training, Research and College Prep (BioTrac) Project. The goal of Phase I, now in its final year of funding, was to develop a replicable model aimed at increasing the numbers of underserved students entering the biomedical research pipeline. Phase I focused on priority areas under Healthy People 2000 reflecting health issues of interest to the community as well as resources available through UM's Jackson Memorial Medical Center. Comprising hands-on project-based programming, career awareness activities, college prep, research internships and college residential experiences, the project has served 98 students to date, of whom 88% are low-income and 96% reside in homes where English is the second language. Of the 43 seniors who have graduated to date, 42 are enrolled in post-secondary studies. Of these, 52% have chosen a science-related major, and of these, 73% have chosen a biomedical course of study. Under the proposed Phase II project, the useum will establish BioTrac as a national demonstration site, extending BioTrac strategies and materials to formal and informal science institutions (ISis) through site-based institutes, distance-learning opportunities and professional conferences and publications. Continued delivery of BioTrac programming at the demonstration site will also further increase the number of underrepresented students entering the biomedical research pipeline, and allow for further programming aimed at increasing public understanding of Healthy People 2010 priorities and biomedical research. The museum will target ISis with youth programs to attend a three-day replication institute, reaching a minimum of 30 ISis during the grant. Through participation in national conferences and professional development sponsored by the Association of Science-Technology Centers, representng 340 ISis, the model has the capacity to impact small, medium, and large science centers nationwide. The model will also be adaptable for use by the other 123 Upward Bound Math & Science Centers engaged in science enrichment programming for underserved youth. Finally, elements of the model will be suitable for extracurricular school-based science clubs and high school magnet programs focused on biomedicine, further extending the potential impact of the model to school districts nationwide.
A research project that is only expert-driven may ignore the role of local knowledge in research, often gives low priority to the development of a comprehensive communication strategy to engage the community, and may not deliver the results of the study to the community in an effective way. Objective: To demonstrate how a research program can respond to a community research need, establish a community-academic partnership, and build a co-created citizen science program. Methods: A place-based, community-driven project was designed where academics and community members maintained a reciprocal
DATE:
TEAM MEMBERS:
Univeristy of Wisconsin- StoutMonica Ramirez-AndreottaMark BrusseauJanick ArtiolaRaina MaierA Jay Gandolfi
BioTrac will expand opportunities in biomedicine for low-income, first-generation college-bound high school students, increasing the number interested in, and prepared to enter, the biomedical research pipeline. Specific objectives are to: (1) Raise awareness of careers in biomedicine and provide students with real-world biomedical research experiences; (2) Increase awareness of requirements and opportunities for related post-secondary study; (3) Increase public understanding of the importance and diversity of biomedical research; and (4) Disseminate project outcomes. In collaboration with the University of Miami (UM) and Miami-Dade County Public Schools (M-DCPS), the Museum will design and implement a replicable model program exposing students to research on selected priority areas outlined in the Public Health Service's Healthy People 2000 agenda. The program will focus on areas with significant local research capacity, ties to local growth industries, and relevance to Miami-Dade's diverse communities. Students will investigate each area through hands-on lab activities, on-line research, site visits to research facilities, and through interactions with research scientists at UM's nationally renowned Jackson Memorial Medical Complex. Students will work in teams to conduct community-focused research on aspects of each priority area, using technology skills acquired as part of the program to document their research through digital video, PowerPoint presentations, and development of a BioTrac website. Students will present their research at annual symposia held at the Museum. They will also serve as science explainers in the Museum's galleries, interpreting biomedical-related exhibits to the general public. During the summer before 12th grade, students will attend residential programs at University of Florida and Florida A&M University, gaining exposure to post-secondary programs leading to careers in biomedical research. Students in 11th and 12th grade will also be encouraged to participate in M-DCPS's Advanced Academic Internship Program, gaining up to three honors credits for work in institutions engaged in biomedical research. Following 12th grade, prior to beginning college, students will be placed in an eight-week summer internships at UM labs engaged in a broad spectrum of biomedical research. The Museum will disseminate students' research experiences and project findings through an BioTrac web page, ASTC and Upward Bound conferences and networks, and Museum and UM publications.
Recent biomedical research has transformed scientific understanding of human biology. But many of these advances haven’t filtered into public awareness, hindering our ability to make good health-related decisions. A new educational program ‒ Biology of Human ‒ will help the public, particularly young people, better understand advances in biomedical research. This innovative, learning research-based science education program is strategically designed to increase awareness of and understanding about new biomedical research developments pertaining to human biology. Biology of Human will provide a sophisticated science education outreach package for students aged 11 to 15 and adults, including parents and educators. The project's goal is to leverage the latest biomedical information and innovations, a dynamic suite of educational and dissemination strategies, and research-driven approach grounded in sociology to broadly educate youth and adults about human biology. A team led by the University of Nebraska State Museum, the Department of Sociology at the University of Nebraska-Lincoln, and the NIH/NCRR-funded Nebraska Center for Virology (a Center of Biomedical Research Excellence) will work with science writers, kids, and educators to complete three specific aims: 1) stimulate interest in and understanding of biomedical research's importance to diverse individuals' health, communities, and environments; 2) establish partnerships among science educators, biomedical researchers, science journalists, and others to create dynamic educational resources focused on biomedical research developments and human biology; and 3) increase youths' interest in biomedical science. Biology of Human will provide adults and youth with several simultaneous, complementary options for learning about how biomedical research has helped us understand human biology including essays, books and blogs; entertaining and scientifically accurate mobile and tablet apps; activities and graphic stories; and a Web site that complements and supports the project's professional development programs. More than 175,000 youth and adults are expected to be directly impacted through this effort.
Summative evaluation plays a critical role in documenting the impacts of informal science education (ISE), potentially contributing to the ISE knowledge base and informing ongoing improvements in practice and decision-making. In response to the growing demand for capacity-building in ISE evaluation, this paper presents a framework for summative evaluation based on an extensive review of literature and research-based refinements. The framework synthesizes key elements of high-quality summative evaluation into three dimensions: (a) Intervention Rationale, (b) Methodological Rigor and
This is a handout from the Science Learning Plus (SL+) Forum held on InformalScience.org from July 6-17, 2015. It lists and describes resources about research and practice collaborations.
In this chapter, we describe a project that addressed the unique professional development needs of docents. The vignette that opened the chapter took place about a year into a NASA-funded school trip project at the museum, at a point when the leadership on this project had undergone a complete turnover, and new leaders were attempting to understand what was happening with the project and what was necessary to move it forward and ensure its success. Elsewhere, we describe the nature of docent change in more detail (Allen & Crowley, 2014). Here, we expand upon the processes our project followed
Intuitive Company researchers and evaluators assessed four components of the DUST Alternate Reality Game for potential reusability: 1) QTE Environment during Collapse, 2) Brain/Health Scanner Mobile App, 3) Microbe Web App, 4) Star Map Web App. We assessed reusability based on five variables (facilitation, user identification, digital access, player type, and timing) along a continuum of informal to formal learning contexts, from museums to after school programs to formal classroom settings. Our assessment revealed that the: 1. QTE Environment during the Collapse is most replayable in its
DATE:
TEAM MEMBERS:
Brigham Young University, University of MarylandJes KoepflerNidhi JalwalVictor Yocco
The Maker Movement has taken the educational field by storm due to its perceived potential as a driver of creativity, excitement, and innovation (Honey & Kanter, 2013; Martinez & Stager, 2013). Making is promoted as advancing entrepreneurship, developing science, technology, engineering, and mathematics (STEM) workforce, and supporting compelling inquiry-based learning experiences for young people. In this paper, we focus on making as an educative inquiry-based practice, and specifically tinkering as a branch of making that emphasizes creative, improvisational problem solving. STEM-rich