Skip to main content

Community Repository Search Results

resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. The project will fill a major gap in knowledge regarding why children listen to science podcasts and what impact they have on their STEM learning. Brains On! is an existing podcast for children 6-12 years old that is produced by American Public Media. The podcasts are kid-driven. Kid listeners send in questions and suggest the show topics. Every episode is co-hosted by a different child, who interviews top scientists about their work, sees research done first hand and helps shape the overall arc of the episode. The project team collaborates with a wide variety of scientists to create programming that is both appealing to kids and has scientific merit. Although Brains On! has enjoyed more than 2.4 million downloads collectively of its 50-episode library little is known about why children are drawn to it, how they are using its content, and what the impacts might be for those who listen to the podcast. There has been no previous research to understand why children choose to listen, or what impact it has on their learning. This Pathways project would produce new episodes and collaborate with the Science Museum of Minnesota that would conduct research to fill this large gap in understanding aural learning through podcasts. The Brains On! project has the following goals to create strategic impact: 1) explore and begin to develop knowledge around what makes children's science podcasts, such as Brains On!, appealing and what role they can play in impacting children and their families' science curiosity, learning, and awareness of science careers, and 2) develop a theory of action for the Brains On! podcast that could also inform the development of similar kinds of children's science podcasts. A mixed-methods exploratory research study will be carried out to address these goals. The three overarching research questions are: Who is the audience for Brains On! and what are their motivations for listening to science podcasts? How are Brains On! listeners using the podcast and engaging with its content? What kinds of impacts does Brains On! have on its audiences? The research results, including the theory of action, from the Brains On! exploratory study will benefit the fields of informal science education and public media by beginning to fill a gap in the current knowledge-base around the potential for science children's podcasts to contribute to a wide range of informal science learning outcomes for children and families, as well provide insight into what features of children's science podcasts can lead to those outcomes. The study results may also encourage other public media and informal science education organizations to create their own science podcasts for children, increasing the reach and potential impact of this emerging STEM media resource.
DATE: -
TEAM MEMBERS: Molly Bloom Sanden Totten Lauren Dee Marc Sanchez Amy Grack Nelson
resource project Informal/Formal Connections
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This Research in Service to Practice project will address the issues around Informal Education of rural middle school students who have high potential regarding academic success in efforts to promote computer and IT knowledge, advanced quantitative knowledge, and STEM skills. Ten school districts in rural Iowa will be chosen for this study. It is anticipated that new knowledge on rural informal education will be generated to benefit the Nation's workforce. The specific objectives are to understand how informal STEM learning shapes the academic and psychosocial outcomes of rural, high-potential students, and to identify key characteristics of successful informal STEM learning environments for rural, high-potential students and their teachers. The results of this project will provide new tools for educators to increase the flow of underserved students into STEM from economically-disadvantaged rural settings.

The President's Council of Advisors on Science and Technology predicts a rapid rise in the number of STEM jobs available in the next decade, describing an urgent need for students' educational opportunities to prepare them for this workforce. In 2014, 62% of CEOs of major US corporations reported challenges filling positions requiring advanced computer and information technology knowledge. The project team will use a mixed methods approach, integrating comparative case study and mixed effects longitudinal methods, to study the Excellence program. Data sources include teacher interviews, classroom observations, and student assessments of academic aptitude and psychosocial outcomes. The analysis and evaluation of the program will be grounded in understanding the local efforts of school districts to build curriculum responsive to the demands of their high-potential student body. The project design, and subsequent analysis plan, utilizes a mixed methods approach, incorporating case study and longitudinal quantitative methods to analyze naturalistic data and build robust evidence for the implementation and impact of this program. This project will provide significant insights in how best to design, implement, and support informal out-of-school learning environments to broaden participation in the highest levels of STEM education and careers for under-resourced rural students.
DATE: -
TEAM MEMBERS: Susan Assouline
resource project Professional Development, Conferences, and Networks
As higher education institutions (HEIs) work to enhance Broader Impacts (BI) efforts, collaborations with informal science education institutions (ISEs) (e.g. science centers, aquaria, zoos) can help them strengthen their impact and reach broader audiences. This project builds on the successful Portal to the Public (PoP) framework, bringing together the expertise and resources of HEIs and ISEs around the shared mission of engaging public audiences in current STEM research. The project is designed to address several critical needs: (1) Public outreach BI activities are relatively uncommon compared to BI that is focused within the infrastructure of academia; (2) Because collaborations with ISEs are frequently tied to individual Principal Investigators (PIs), there is limited opportunity to build a body of knowledge around the practice of partnering for BI work; and (3) Collaborations are often transient, making it more difficult for universities to view BI on an institutional level in ways that leverage particular institutional assets or strategies and even link investigators from multiple projects. The specific areas of study are: a. Develop and test a structure for education/outreach BI experience design that addresses a public audience need and meets NSF's BI criterion: The project will create disseminatable tools around the activity design process (including evaluation of learning impacts). By convening cross-disciplinary teams, the project will ensure that experiences will reflect a wide range of expertise and will help meet the needs of multiple stakeholders. These established structures will lower the barrier to entry for PIs who want to do public outreach BI. b. Design, test, and study structures for long-term, mutually beneficial HEI-ISE partnerships: The project will build on the proven PoP model to create flexible, disseminatable tools around the development of institutional partnerships at three collaborating HEI-ISE site pairings that consider each institution's resources, constraints and strategic goals, including a cross-institutional and cross-disciplinary Broader Impacts Design (BID) Team structure. Sustained partnerships will support ongoing public engagement with current STEM research. c. Anchor the partnership at the HEI with a representative from an office of research support: Research support professionals will be a core part of the BID Team and will help support institutional strategies for aligning BI activities with broader goals around community engagement. d. Study the culture of HEI-ISE partnerships, building knowledge about how these institutions can form effective, sustained and mutually beneficial collaborations. Project partners include Pacific Science Center with the University of Washington, Bothell, WA; University of Wisconsin-Madison with the Wisconsin Institute for Discovery; and the Sciencenter with Cornell University, Ithaca, NY. In addition, the Center for Research in Lifelong Learning, Oregon State University will oversee the research aspects of the project. The project's primary benefit is the development of more effective mechanisms for HEIs and ISEs to collaborate, that will better enable them to engage their communities in experiences and conversations about current STEM research and innovation. This project is being funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. There are few empirical studies of sustained youth engagement in STEM-oriented making over time, how youth are supported in working towards more robust STEM related projects, on the outcomes of such making experiences among youth from historically marginalized communities, or on the design features of making experiences which support these goals. The project plans to conduct a set of research studies to develop: a theory-based and data-driven framework for equitably consequential making; a set of related individual-level and program-level cases with exemplars (and the associated challenges) that can be used by researchers and practitioners for guiding the field; and an initial set of guiding principles (with indicators) for identifying equitably consequential making in practice. The project will result in a framework for equitably consequential making with guiding principles for implementation that will contribute to the infrastructure for fostering increased opportunities to learn among all youth, especially those historically underrepresented in STEM.

Through research, the project seeks to build capacity among STEM-oriented maker practitioners, researchers and youth in the maker movement around equitably consequential making to expand the prevailing norms of making towards more transformative outcomes for youth. Project research will be guided by several questions. What do youth learn and do (in-the-moment and over time) in making spaces that work to support equity in making? What maker space design features support (or work against) youth in making in equitably consequential ways? What are the individual and community outcomes youth experience in STEM-making across settings and time scales? What are the most salient indicators of equitably consequential making, how do they take shape, how can these indicators be identified in practice? The project will research these questions using interview studies and critical longitudinal ethnography with embedded youth participatory case study methodologies. The research will be conducted in research-practice partnerships involving Michigan State University, the University of North Carolina at Greensboro and 4 local, STEM- and youth-oriented making spaces in Lansing and Greensboro that serve historically underrepresented groups in STEM, with a specific focus on youth from lower-income and African American backgrounds.
DATE: -
TEAM MEMBERS: Angela Calabrese Barton Scott Calabrese Barton Edna Tan
resource project Public Programs
This one-year Collaborative Planning project seeks to bring together an interdisciplinary planning team of informal and formal STEM educators, researchers, scientists, community, and policy experts to identify the elements, activities, and community relationships necessary to cultivate and sustain a thriving regional early childhood (ages 3-6) STEM ecosystem. Based in Southeast San Diego, planning and research will focus on understanding the needs and interests of young Latino dual language learners from low income homes, as well as identify regional assets (e.g., museums, afterschool programs, universities, schools) that could coalesce efforts to systematically increase access to developmentally appropriate informal STEM activities and resources, particularly those focused on engineering and computational thinking. This project has the potential to enhance the infrastructure of early STEM education by providing a model for the planning and development of early childhood focused coalitions around the topic of STEM learning and engagement. In addition, identifying how to bridge STEM learning experiences between home, pre-k learning environments, and formal school addresses a longstanding challenge of sustaining STEM skills as young children transition between environments. The planning process will use an iterative mixed-methods approach to develop both qualitative and quantitative and data. Specific planning strategies include the use of group facilitation techniques such as World Café, graphic recording, and live polling. Planning outcomes include: 1) a literature review on STEM ecosystems; 2) an Early Childhood STEM Community Asset Map of southeast San Diego; 3) a set of proposed design principles for identifying and creating early childhood STEM ecosystems in low income communities; and 4) a theory of action that could guide future design and research. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Ida Rose Florez
resource project Professional Development, Conferences, and Networks
This ChangeMakers project builds on a 2016 National Academies report finding that scientific literacy can be understood at a community level as opposed to a traditional focus on the individual. This is important since scientific knowledge is often seen as abstract and distant from the daily concerns of average citizens. A community focus shifts the spotlight away from individual learning to collective learning facilitated by trusted cultural institutions serving as social assets. This work brings together scientific expertise and community organizations to advance operational science literacy--scientific ways of problem-solving--for community leaders and functional science literacy--information and skills people can use in their daily lives--among their service populations. This will be done by gathering and sharing knowledge and developing skills and abilities to contribute to the community's overall well-being.

The New England Aquarium (NeAq) and Aquarium of the Pacific (AoP) will apply a community engagement model involving active listening, documentation, alignment of concerns and goals, and co-development of shared solutions that serves the needs of all participants. As part of the Advancing Community Science Literacy (ACSL) project, multi-disciplinary teams from NeAq, AoP and their regional partners will participate in training on the model. They will apply that training to build and implement action plans to advance community-driven responses to local environmental issues. Teams will be assessed with respect to how they use tools from their shared training, along with peer support and coaching, to make progress in engaging diverse community stakeholders. Results of the evaluation will offer insights and recommendations for informal science learning centers to serve their communities more effectively as engagement facilitators and change agents to support science literacy development and action. By applying techniques developed for cultural institutions to communicate about climate science, and combining those with techniques developed for libraries and other organizations to help meet emergent community concerns, such as storm surges and coastal flooding, it is possible to redefine the role informal science learning centers can play as part of a community culture.

ACSL is funded by the Advancing Informal STEM Learning (AISL) program which supports projects that provide multiple pathways for broadening access to and engagement in STEM learning experiences, advances innovative research on and assessment of STEM learning in informal environments, and develops understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Billy Spitzer Julie Sweetland Richard Harwood John Fraser
resource project Public Programs
Public Participation in Scientific Research (PPSR), often referred to as crowdsourcing or citizen science, engages participants in authentic research, which both advances science discovery as well as increases the potential for participants' understanding and use of science in their lives and careers. This four year research project examines youth participation in PPSR projects that are facilitated by Natural History Museums (NHMs). NHMs, like PPSR, have a dual focus on scientific research and science, technology, engineering, and mathematics (STEM) education. The NHMs in this project have established in-person and online PPSR programs and have close ties with local urban community-based organizations. Together, these traits make NHMs appropriate informal learning settings to study how young people participate in PPSR and what they learn. This study focuses on three types of PPSR experiences: short-term outdoor events like bioblitzes, long-term outdoor environmental monitoring projects, and online PPSR projects such as crowdsourcing the ID of field observations. The findings of this study will be shared through PPSR networks as well as throughout the field in informal STEM learning in order to strength youth programming in STEM, such that youth are empowered to engage in STEM research and activities in their communities. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.

The study employs observations, surveys, interviews, and learning analytics to explore three overarching questions about youth learning: 1) What is the nature of the learning environments and what activities do youth engage in when participating in NHM-led PPSR? 2) To what extent do youth develop three science learning outcomes, through participation in NHM-led citizen science programs? The three are: a) An understanding of the science content, b) identification of roles for themselves in the practice of science, and c) a sense of agency for taking actions using science? 3) What program features and settings in NHM-led PPSR foster these three science learning outcomes among youth? Based on studies occurring at multiple NHMs in the US and the UK, the broader impact of this study includes providing research-based recommendations for NHM practitioners that will help make PPSR projects and learning science more accessible and productive for youth. This project is collaboration between education researchers at University of California, Davis and Open University (UK), and Oxford University (UK) and citizen science practitioners, educators, and environmental scientists at three NHMs in the US and UK: NHM London, California Academy of Sciences, and NHM Los Angeles.
DATE: -
TEAM MEMBERS: Heidi Ballard Lila Higgins Alison Young
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will develop a national infrastructure of state and regional partnerships to scale up The Franklin Institute's proven model of Leap into Science, an outreach program that builds the capacity of children (ages 3-10) and families from underserved communities to participate in science where they live. Leap into Science combines children's science-themed books with hands-on science activities to promote life-long interest and knowledge of science, and does so through partnerships with informal educators at libraries, museums, and other out-of-school time providers. Already field-tested and implemented in 12 cities, Leap into Science will be expanded to 90 new rural and urban communities in 15 states, and it is estimated that this expansion will reach more than 500,000 children and adults as well as 2,700 informal educators over four years. The inclusion of marginalized rural communities will provide new opportunities to evaluate and adapt the program to the unique assets and needs of rural families and communities.

The project will include evaluation and learning research activities. Evaluation will focus on: 1) the formative issues that may arise and modifications that may enhance implementation; and 2) the overall effectiveness and impact of the Leap into Science program as it is scaled across more sites and partners. Learning research will be used to investigate questions organized around how family science interest emerges and develops among 36 participating families across six sites (3 rural, 3 urban). Qualitative methods, including data synthesis and cross-case analysis using constant comparison, will be used to develop multiple case studies that provide insights into the processes and outcomes of interest development as families engage with Leap into Science and a conceptual framework that guides future research. This project involves a partnership between The Franklin Institute (Philadelphia, PA), the National Girls Collaborative Project (Seattle, WA), Education Development Center (Waltham, MA), and the Institute for Learning Innovation (Corvallis, OR).
DATE: -
TEAM MEMBERS: Darryl Williams Karen Peterson Lynn Dierking Tara Cox Julia Skolnik Scott Pattison
resource project Professional Development, Conferences, and Networks
Supporting and sustaining public science literacy and engagement are important goals of informal science education institutions worldwide. Although there is evidence that both science centers and natural history museums positively influence public science literacy and engagement, significant differences exist between these two types of institutions. This international workshop on Integration of Science Centers with Natural History Museums for Imparting Informal Education addresses this issue by convening key science center and natural history museum professionals from 9 countries in South and Southeast Asia, as well as the United States, to explore the strengths and limitations of the assets, philosophies and strategies of these institutions. Beyond the benefits science center and natural history museum professionals attending will receive, the effort will significantly contribute to the broader US and international conversation about the future of science centers and natural history museums, as well as other museum-like, science-rich informal education institutions, in these regions and beyond. In particular, supporting personal and cultural relevance has been a major focus of informal science education organizations globally, and the recommendations that emerge from the meeting will significantly contribute to this dialogue and help to make advances in the disciplinary field of informal science education.

This international workshop, hosted in Malaysia and facilitated by researchers from the Institute for Learning Innovation, convenes 40 science center and natural history museum professionals to explore the affordances and constraints of science centers and natural history museum exhibitions, programs, outreach efforts, websites, etc. The conference is designed to examine the opportunities, challenges and barriers to integrating key design principles that blend the best of science centers and natural history museums, while guiding the creation of new forms of 21st century informal science education institutions. Additional goals explore how to make informal science education institutions in general more relevant to 21st century publics, both culturally and personally, as well as foster intra- and international collaborations between science center and natural history museum professionals. Toward these ends, all conference participants will commit to the completion of pre-conference assignments; active preparation and involvement at the meeting; and, assistance with the dissemination of project findings. The major deliverable will be a Whitepaper describing the outcomes of the meeting and the key design principles that leverage the effectiveness and relevance of each of these institutions. The Whitepaper will be produced in both hard copy and electronic form and more broadly disseminated throughout the natural history museum and science center fields in all participating countries. The electronic form will be hosted and available for download through the website of the Institute for Learning Innovation and the Center for Advancing Informal Science Education (CAISE) with links to all participating institutions. This project is supported jointly by the NSF Office of International Science and Engineering (OISE) and the Advances in Informal STEM Education (AISL) program.
DATE: -
resource project Public Programs
Makerspaces and engineering design spaces have proliferated in science museums, schools, libraries, and community settings at a rapid pace. However, there is a risk that some of the same inequities that exist in the engineering field are being replicated in these settings. Research has provided evidence of persistent gaps between boys' and girls' levels of interest in engineering as it has been traditionally represented in informal learning environments, particularly in Making and engineering spaces. This Research-In-Service to Practice project intends to address this gap by employing a design-based research approach to examine if and to what extent narrative elements can interest and engage middle school girls in science, technology, engineering, and mathematics (STEM), and promote equitable, effective engineering design experiences and practices. This work is significant, as it will build upon current research and conceptual understanding of how to design narrative-rich engineering design activities for informal learning spaces, especially for girls, and within museum drop-in experiential learning contexts. It will also contribute to the evidence base regarding how girls approach and choose to persist in solving engineering design problems. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The New York Hall of Science (NYSCI) in collaboration with the Amazeum in Bentonville, Arkansas, the Tech Museum of Innovation in San Jose, California, the Creativity Labs at Indiana University and a team of advisors will conduct the 30-month, design-based research project in two phases. In the first phase, NYSCI will garner ongoing input from its partners to develop parallel versions of six pairs of engineering design activities, one with narrative elements and one without. These activities will be iteratively tested in NYSCI's Design Lab, a 10,000 square foot exhibition devoted to hands-on exploration of engineering design. Several research questions will be explored, focused primarily on building evidence-based design knowledge, establishing appeal and comprehensibility, and understanding facilitation. Observational and interview data will be garnered from 30 girls aged 7-14 and their family groups for each of the twelve activities developed, totaling 360 girls in the study sample. The results of the research on the paired activities will be iterative and provide insight on how narrative elements can most effectively invite girls into sustained engagement with the core engineering concepts and practices highlighted in each activity. In the second phase, formative and summative evaluation will be conducted to study the impact of the narrative and non-narrative versions of the engineering design activities on participating girls' engagement and persistence, by contrasting the quality of girls' engagement across the two types of activities while they are implemented across three museum sites. Project deliverables include journal articles reporting on project findings; documentation of activities that meet project goals; design guidelines for exhibit and curriculum developers who are interested in using narrative effectively to frame engineering design activities; and practical guidance for facilitators seeking to ensure that they are supporting girls effectively as they explore those activities.
DATE: -
TEAM MEMBERS: Dorothy Bennett Katherine McMillan Susan Letourneau Peggy Monahan
resource project Media and Technology
The widespread accessibility of live streaming video now makes it possible for viewers around the world to watch live events together, including unprecedented, 24/7 views of wildlife. In addition, online technologies such as live chatting and forums have opened new possibilities for people to collaborate from locations around the world. The innovation that the projects provide is bringing these opportunities together, enabling real-time research and discussion as participants observe and annotate live streaming footage; sharing questions and insights through live Q&A sessions; and explore data with interactive visualization tools. Scientists will support the community's research interests, in contrast with traditional models of citizen science in which communities support the work of scientists. This project will enable people from diverse backgrounds and perspectives to co-create scientific investigations, including participants who might not otherwise have access to nature. The evaluation research for this project will advance the understanding of practices that enable interconnected communities of people to participate in more phases of scientific discovery, and how participation affects their learning outcomes. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of science, technology, engineering, and mathematics (STEM) learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. As such, this project will advance a new genre of Public Participation in STEM Research (PPSR). It will also advance scientific exploration using live wildlife cams and establish a database for long-term research to understand how bird behavior and reproductive success are affected by environmental change. This project aims to deepen public involvement in science, building on knowledge and relevance for STEM learning by creating an online learning environment that expands on traditional crowdsourcing models of PPSR in which participants collect data to answer questions driven by scientists. In this project, participants are involved in co-created research investigations, including asking questions, deciding what data are needed, generating data, looking for patterns, making interpretations, reviewing results, and sharing findings. The goals are to 1) create a system that involves the public more deeply in scientific research; 2) develop participants' science skills and interests; 3) increase participants' understanding of birds and the environment; 4) generate new scientific knowledge about wildlife; and 5) advance the understanding of effective project design for co-created PPSR projects at a national scale. Through iterative design and evaluation, the project will advance the understanding of the conditions that foster online collaboration and establish design principles for supporting science and discovery in online learning environments. Through scaling and quasi-experimental studies, the evaluation research will advance the understanding of how learning outcomes may be similar or different for participants engaging in different ways, whether they observe the cams and read about the investigation, process data as contributors, provide some input as collaborators, or join in most or all of the scientific process as co-creators. Despite the popularity of live wildlife cams, with millions of people watching hundreds of cams around the world, little research has been conducted on the use of live cams for collaborative work in formal or informal science education. The infrastructure and open-source framework created for this project will expand the capacity for online communities of people from diverse career backgrounds and perspectives to collaborative on solving personally meaningful questions and contribute to new knowledge. Using this project as a prototype, cam operators from around the world could build networks of cams, enabling future studies with broader scope for comparative biological studies and discoveries. Additionally, it will serve as a model for use in classrooms or for online communities exploring other scientific fields using live-streaming content in collaborative research. By involving scientists and participants from across society as collaborators and co-creators, this project can help increase public engagement with science, technology, and environmental stewardship while advancing the understanding of the natural world and informing public decision-making.
DATE: -
TEAM MEMBERS: Miyoko Chu David Bonter Tina Phillips
resource project Exhibitions
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This study will capitalize on the increased availability and affordability of immersive interactive technologies, such as Augmented Reality devices and virtual characters, to investigate their potential for benefitting STEM learning in informal museum contexts. This project will combine these technologies to create an Augmented Reality experience that will allow middle-school youth and their families to meet and assist a virtual crew on a historic ship at the Independence Seaport Museum in Philadelphia. The players in this game-like experience will encounter technologies from the turn of the 20th century, including steam power, electricity, and wireless communication. Crew members and technologies will be brought to life aboard the USS Olympia, the largest and fastest ship in the US Navy launched in 1892. The historic context will be positioned in relation to current day technologies in ways that will enable a change in interest towards technology and engineering in middle school-age youth. This will result in a testbed for the feasibility of facilitating short-term science, technology, engineering and mathematics (STEM) identity change with interactive immersive technologies. A successful feasibility demonstration, as well as the insights into design, could open up novel ways of fostering STEM interest and identity in informal learning contexts and of demonstrating the impact of this approach. The potential benefit to society will rest in the expected results on the basic science regarding immersive interactive technologies in informal learning contexts as well as in demonstrating the feasibility of the integrated approach to assessment.

This project will use a living lab methodology to evaluate interactive immersive technologies in terms of their support for STEM identity change in middle-school age youth. The two-year design-based research will iteratively develop and improve the measurement instrument for the argument that identity change is a fundamental to learning. A combination of Augmented Reality and intelligent virtual agents will be used to create an interactive experience--a virtual living lab--in an informal museum learning exhibit that enables change interests towards technology and engineering and provides short-term assessment tools. In collaboration with the Independence Seaport Museum in Philadelphia, the testbed for the approach will be an experience that brings to life the technologies of the early 20th century aboard a historic ship. Through the application of Participatory Action Research techniques, intelligent virtual agents interacting with youth and families will customize STEM information relating to the ship's mission and performance. Topics explored will make connections with current day technologies and scientific understanding. Mixed-methods will be used to analyze interactions, interview and survey data, will form the basis for assessing the impact on youth's STEM interests. The elicitation method specifically includes assessment metrics that are relevant to the concept of learning as identity change. This assessment, through immersive interactive technologies, will target the priority areas of engagement in STEM as well as the measurement of outcomes.
DATE: -
TEAM MEMBERS: Stefan Rank Ayana Allen Glen Muschio Aroutis Foster Kapil Dandekar