Skip to main content

Community Repository Search Results

resource research Exhibitions
Given the growth of technology in the 21st century and the growing demands for computer science skills, computational thinking has been increasingly included in K-12 STEM (Science, Technology, Engineering and Mathematics) education. Computational thinking (CT) is relevant to integrated STEM and has many common practices with other STEM disciplines. Previous studies have shown synergies between CT and engineering learning. In addition, many researchers believe that the more children are exposed to CT learning experiences, the stronger their programming abilities will be. As programming is a
DATE:
TEAM MEMBERS: Hoda Ehsan Tikyna Dandridge Ibrahim Yeter Monica Cardella
resource research Media and Technology
Increasing demand for curricula and programming that supports computational thinking in K-2 settings motivates our research team to investigate how computational thinking can be understood, observed, and supported for this age group. This study has two phases: 1) developing definitions of computational thinking competencies, 2) identifying educational apps that can potentially promote computational thinking. For the first phase, we reviewed literatures and models that identified, defined and/or described computational thinking competencies. Using the model and literature review, we then
DATE:
TEAM MEMBERS: Hoda Ehsan Chanel Beebe Monica Cardella
resource research Exhibitions
For the past two decades, researchers and educators have been interested in integrating engineering into K-12 learning experiences. More recently, computational thinking (CT) has gained increased attention in K-12 engineering education. Computational thinking is broader than programming and coding. Some describe computational thinking as crucial to engineering problem solving and critical to engineering habits of mind like systems thinking. However, few studies have explored how computational thinking is exhibited by children, and CT competencies for children have not been consistently defined
DATE:
resource research Exhibitions
Informal learning environments such as science centers and museums are instrumental in the promotion of science, technology, engineering, and mathematics (STEM) education. These settings provide children with the chance to engage in self-directed activities that can create a of lifelong interest and persistence in STEM. On the other hand, the presence of parents in these settings allows children the opportunity to work together and engage in conversations that can boost understanding and enhance learning of STEM topics. To date, a considerable amount of research has focused on adult-child
DATE:
TEAM MEMBERS: Hoda Ehsan Carson Ohland Monica Cardella
resource research Public Programs
This article presents a metalogue discussion about the two focus articles and the six associated review essays on the topic of conceptual change as it applies to research, and science teaching and learning in a museum setting. Through the lenses of a sociocultural perspective of learning we examine the applicability of the ideas presented in the forum for museums and museum educators. First we reflect on the role that emotions can play in concept development; second, we reflect on the role of language, talk, and gestures to concept development and conceptual change in the short-lived nature of
DATE:
TEAM MEMBERS: Jennifer Adams Lynn Tran Preeti Gupta Helen Creedon-O'Hurley
resource research Public Programs
Children’s storybooks are a ubiquitous learning resource, and one with huge potential to support STEM learning. They also continue to be a primary way that children learn about the world and engage in conversations with family members, even as the use of other media and technology increases. Especially before children learn to read, storybooks create the context for in-depth learning conversations with parents and other adults, which are the central drivers of STEM learning and development more broadly at this age. Although there is a body of literature highlighting the benefits of storybooks
DATE:
resource project Exhibitions
Computational Thinking (CT) is a relatively new educational focus and a clear need for learners as a 21st century skill. This proposal tackles this challenging new area for young learners, an area greatly in need of research and learning materials. The Principal Investigators will develop and implement integrated STEM+C museum exhibits and integrate CT in their existing engineering design based PictureSTEM curriculum for K-2 students. They will also pilot assessments of the CT components of the PictureSTEM curriculum. This work will make a unique contribution to the available STEM+C learning materials and assessments. There are few such materials for the kindergarten to second grade (K-2) population they will work with. They will research the effects of the curriculum and the exhibits with a mixed methods approach. First, they will collect observational data and conduct case studies to discover the important elements of an integrated STEM+C experience in both the formal in-school setting with the curriculum and in the informal out-of-school setting with families interacting with the museum exhibits. This work will provide a novel way to understand the important question of how in- and out-of-school experiences contribute to the development of STEM and CT thinking and learning. Finally, they will collect data from all participants to discover the ways that their activities lead to increases in STEM+C knowledge and interest.

The Principal Investigators will build on an integrated STEM curriculum by integrating CT and develop integrated museum exhibits. They base both activities on engineering design implemented through challenge based programming activities. They will research and/or develop assessments of both STEM+C integrated thinking and CT. Their research strategy combines Design Based Research and quantitative assessment of the effectiveness of the materials for learning CT. In the first two years of their study, they will engage in iterations on the design of the curriculum and the exhibits based on observation and case-study data. There will be 16 cases that draw from each grade level and involve data collection for the case student in both schools and museums. They will also use this work to illuminate what integrated STEM+C thinking and learning looks like across formal and informal learning environments. Based in some part on what they discover in this first phase, they will conduct the quantitative assessments with all (or at least most) students participating in the study
DATE: -
TEAM MEMBERS: Tamara Moore Monica Cardella Senay Purzer Sean Brophy Morgan Hynes Tamara Moore Hoda Ehsan
resource research Public Programs
Engineering is a critical yet understudied topic in early childhood. Previous research has shown that even young children can engage in (versions of) engineering design practices and processes that are similar to those of adult engineers and designers. In this session, we will share and discuss current research projects to explore how different in-school and out-of-school contexts and activities support 3- to 8-year-old children as they engage in engineering design. We will consider ways that the different characteristics of the activities and spaces, as well as the practices of teachers
DATE:
TEAM MEMBERS: Scott Pattison Monica Cardella Hoda Ehsan Smirla Ramos-Montañez Gina Navoa Svarovsky Merredith Portsmore Elissa Milto Mary Beth McCormack Chris San Antonio-Tunis M. Terri Sanger
resource research Public Programs
This study addresses the increasing interest in family learning in informal settings by investigating strategies to better engage families in science talk and practices. As part of a larger design-based research study, we examine how scientists and parents use think-pair-share discussion prompts to support families’ understandings about local community water sources and facilitate experimentation with a surface and underground water model. Grounded in sociocultural theory of learning, we focus on parent-child interactions and family sensemaking. We analyzed four water quality workshops with 44
DATE:
TEAM MEMBERS: Lucy McClain Yu-Chen Chiu Heather Toomey Zimmerman
resource research Public Programs
There is a growing need for science educators and communicators who can support public understanding of complex science issues. Across the United States, science museums increasingly offer volunteer positions to youth, allowing them opportunities to work in a variety of educational programming or research experiences. These programs are often designed to encourage youth to pursue STEM careers but may also have the added effect of inspiring the next generation of science educators and communicators. This study examined how youth volunteer experiences influence career aspirations. Twenty-one
DATE:
TEAM MEMBERS: Kathryn Rende M. Gail Jones Emma Refvem Megan Ennes Pamela Huff
resource research Media and Technology
We found that the learners seeking out resources to teach themselves to code were generally college educated women who were motived either by the desire to be able to read and understand the code written by hired developers or the desire to become developers themselves. The importance of a female-focused learning setting was mixed; while most women acknowledged a more comfortable atmosphere created by such a setting, very few cited that as a primary reason for joining the group. All learner participants in this study persisted through the ten weeks of the Women’s Coaching and Learning
DATE:
resource evaluation Media and Technology
In 2016, ETR received a National Science Foundation grant to study, under Principal Investigator Louise Ann (“Lou Ann”) Lyon, PhD, a newly formed, real-world organization dedicated to helping women in the workforce learn to write computer code. This project formed a partnership between a research team with experience in computer science (CS) education and learning sciences research and a newly fashioned practitioner team focused on building a grassroots, informal, volunteer group created to help women help themselves and others learn to write computer code. This research-practitioner
DATE: