Recently, Dancstep undertook a comprehensive study of exhibits in order to identify designs that most successfully engage girls aged 8-13 years (without turning away boys). That project, called Exhibit Designs for Girls’ Engagement (EDGE), explored nearly 60 exhibit design attributes and found nine that consistently and significantly corresponded with positive engagement for girls in science museums (Dancstep & Sindorf, 2016, 2018).
After completing the study, we reanalyzed the engagement information for both girls and boys, averaged over 301 exhibits across three institutions. Our goal was
This video captures the energy and potetial of the Designing our Tomorrow project. It is intended to complement presentations and posters about Designing our Tomorrow.
The Designing Our Tomorrow project aims to develop a framework for creating exhibit-based engineering design challenges and expand an existing model of facilitation for use in engineering exhibits. Designing our Tomorrow seeks to broaden participation in engineering and build capacity within the informal science education (ISE) field while raising public awareness of the importance of sustainable engineering design practices
These Latinas are innovators, problem-solvers and science superstars who celebrate their heritage and culture. They’re passionate about their work, hobbies, families and helping to make the world a better place. They share their strategies and pathways in jobs where Latinas are under-represented, and motivate girls to pursue all kinds of interests and career paths.
Estas latinas solucionan problemas, son innovadoras y superestrellas de ciencia que celebran su patrimonio y cultura. Les apasiona su trabajo, familia, aficiones y ayudar a mejorar el mundo. Comparten sus estrategias y caminos en
K-12 informal engineering education can support student confidence, interest, and awareness of the field of engineering. Studies have suggested that K-12 informal learning can influence students’ awareness of the fields of engineering as potential career opportunities. Researchers have also found that engineering activities outside of school can engage youth in disciplines of which they are unfamiliar because of a lack of engineering opportunity in K12 formal education. In this paper, we provide a rich case study of one lesson’s implementation in a 5th-6th grade girls afterschool program. Our
This annual report presents an overview of Saint Louis Science Center audience data gathered through a variety of evaluation studies conducted during 2015. This report includes information on the Science Center's general public audience demographics and visitation patterns, gives an overview of visitors' comments about their Science Center experience, summarizes major trends observed in the Science Center's tool for tracking educational programs, and presents highlights from a Membership study, a formative evaluation of a new Makerspace exhibition, and program evaluation of a workshop for the
In April 2018, FHI 360, under the leadership of Maryann Stimmer and Merle Froschl, convened a meeting of thought leaders in Washington, D.C. to capture a “snapshot” of STEM education. They subsequently conducted additional interviews with more than 50 local and national policy leaders; public and private funders; researchers; PreK-12 and post-secondary educators; parents, and leaders of afterschool programs, science centers and youth-serving organizations. The purpose of this summary report is to identify current trends and gaps to inform research, policy, and practice in order to reinforce
Curiosity is a grant-funding programme from the Wellcome Trust with BBC Children in Need., and it provides funding to help youth organisations develop and deliver inspiring science activities for disadvantaged children and young people. This report looks at the key findings from the 32 projects funded during the first round.
The Round 1 projects were delivered by voluntary and community sector organisations, some of which were in partnership with ISL providers, and offered a variety of science opportunities from surveying local weather to building a green-powered race car. Many projects
The Math, Engineering, Science Achievement (MESA) outreach programs are partnerships between K-12 schools and higher education in eight states that for over forty years introduce science, mathematics and engineering to K-12 students traditionally underrepresented in the discipline. This exploratory study examines the influences that those MESA activities have on students' perception of engineering and their self-efficacy and interest in engineering and their subsequent decisions to pursue careers in engineering. The MESA activities to be studied include field trips, guest lecturers, design competitions, hands-on activities and student career and academic advisement.
About 1200 students selected from 40 MESA sites in California, Maryland and Utah are surveyed with instruments that build on those used in prior studies. Focus groups with a randomly selected subset of the students provide follow-up and probe the influence of the most promising activities. In the first year of the project the instruments, based on existing instruments, are developed and piloted. Data are taken in the second year and analyzed in the third year. A separate evaluation determines that the protocols are reasonable and are being followed.
The results are applicable to a number of organizations with similar aims and provide information for increasing the number of engineers from underrepresented populations. The project also investigates the correlation between student engagement in MESA and academic performance. This project provides insights on activities used in informal settings that can be employed in the classroom practice and instructional materials to further engage students, especially student from underrepresented groups, in the study of STEM.
DATE:
-
TEAM MEMBERS:
Christine HaileyCameron DensonChandra Austin
In this paper, we use the concept of consequential learning to frame our exploration of what makes learning and doing science matter for youth from nondominant communities, as well as the barriers these youth must confront in working toward consequential ends. Data are derived from multimodal cases authored by four females from nondominant communities that present an account of 'science that matters' from their work during their middle school years. We argue that consequential learning in science for these girls involves engaging science with a commitment to their community. This form of
DATE:
TEAM MEMBERS:
Daniel BirminghamAngela Calabrese BartonAutumn McDanielJalah JonesCamryn TurnerAngel Roberts