Playscapes are intentionally designed, dynamic, vegetation-rich, play environments that nurture young children's affinity for nature. We investigated how the affordances of a nature playscape provide opportunities to strengthen children's executive function by identifying examples of goal-directed and focused problem-solving within children's free play in this setting. Through video-based fieldwork, drawing on the extant literature, and application of indicators within existing assessments for executive function in nature preschools, we found that playscapes can be executive function-enhancing
DATE:
TEAM MEMBERS:
Victoria CarrRhonda BrownSue SchlembachLeslie Kochanowski
Increasing demand for curricula and programming that supports computational thinking in K-2 settings motivates our research team to investigate how computational thinking can be understood, observed, and supported for this age group. This study has two phases: 1) developing definitions of computational thinking competencies, 2) identifying educational apps that can potentially promote computational thinking. For the first phase, we reviewed literatures and models that identified, defined and/or described computational thinking competencies. Using the model and literature review, we then
For the past two decades, researchers and educators have been interested in integrating engineering into K-12 learning experiences. More recently, computational thinking (CT) has gained increased attention in K-12 engineering education. Computational thinking is broader than programming and coding. Some describe computational thinking as crucial to engineering problem solving and critical to engineering habits of mind like systems thinking. However, few studies have explored how computational thinking is exhibited by children, and CT competencies for children have not been consistently defined
The aim of this review of the literature is to identify what we already know about the engagement of children aged under eight in makerspaces. Given the limited literature in the area, the review takes a broader look at makerspaces for older children where relevant. This is not a systematic review; its aim is not to offer an exhaustive account of all of the research conducted in the area. Rather, this narrative review provides an introduction to key aspects of research on makerspaces and enables the identification of themes dominant in the field, and those areas where more research is needed
DATE:
TEAM MEMBERS:
Jackie MarshKristiina KumpulainenBobby NishaAnca VelicuAlicia Blum-RossDavid HyattSvanborg JónsdóttirRachael LevySabine LittleGeorge MarusteruMargrét Elísabet ÓlafsdóttirKjetil SandvikFiona ScottKlaus ThestrupHans Christian ArnsethKristín DýrfjörðAlfredo JornetSkúlína Hlíf KjartansdóttirKate PahlSvava PétursdóttirGísli ThorsteinssonUniversity of Sheffield
Informal science learning (ISL) organizations that are successful at providing meaningful science, technology, engineering, arts, and mathematics (STEAM) experiences for Latino children, youth, and their families share some common traits. They have leaders and staff who believe in the importance of developing culturally relevant models and frameworks that meet the needs and acknowledge the legacy of STEAM in Latino communities. Such organizations are willing to take risks to create experiences that are culturally meaningful, garner funding and implement programs by working closely with their
DATE:
TEAM MEMBERS:
Cheryl JuarezVerónika NúñezExploratorium
Community collaboration and empowerment was identified by the GENIAL organizers as an important theme to include in the Summit. Informal STEM learning (ISL) organizations strive to engage Latino audiences in their science, technology, engineering, and math (STEM) programming on a long-term basis and recognize the importance of understanding the needs, motivations, interests, and challenges of the diverse Latino community in the context of STEM participation. An effective way to collaborate with a community is to involve them as equal partners in the co-development of ISL experiences. A key
DATE:
TEAM MEMBERS:
Salvador AcevedoPaul DusenberyExploratorium
resourceresearchMuseum and Science Center Programs
This article focuses on the efforts of the Collaborative for Early Science Learning (CESL), a group of six museums led by the Sciencenter in Ithaca, New York, that partner with their local Head Start programs to provide training for teachers and opportunities for family engagement. These efforts address the gap between children’s readiness to explore science through everyday experiences and adults’ support. CESL believes that hands-on professional development (PD) opportunities for teachers and families can reduce adult discomfort with facilitating science programming and increase their
In this case study, we highlight the work of the Bay Area STEM Ecosystem, which aims to increase equity and access to STEM learning opportunities in underserved communities. First, we lay out the problems they are trying to solve and give a high level overview of the Bay Area STEM Ecosystem’s approach to addressing them. Then, based on field observations and interviews, we highlight both the successes and some missed opportunities from the first collaborative program of this Ecosystem. Both the successes of The Bay Area STEM Ecosystem--as well as the partners’ willingness to share and examine
The Head Start on Engineering project engages parents and children in a multicomponent family engineering program that includes professional development for teachers, workshops for parents, take-home family activity kits, home visits, classroom extensions, and a culminating field trip to a science center.
Throughout their lives, children from low socioeconomic backgrounds and traditionally underserved and under-resourced communities face significant barriers to engaging with engineering and science (Gershenson 2013; Orr, Ramirez, and Ohland 2011). Supporting learning and interest
This paper was present at the 2017 ASEE (American Society for Engineering Education) Annual Conference & Exposition.
Head Start on Engineering (HSE) is a collaborative, NSF-funded research and practice project designed to develop and refine a theoretical model of early childhood, engineering-related interest development. The project focuses on Head Start families with four-year-old children from low-income communities and is being carried out collaboratively by researchers, science center educators, and a regional Head Start program. The ultimate goal of the HSE initiative is to advance the
Girls met to engage with Through My Window twice each week after school. The afterschool program format provided a freer, less structured atmosphere than a classroom setting. Students extensively debated and investigated the questions and themes posed by the novel, Talk to Me. The meeting space had plenty of space for students to move around, as well as teachers who encouraged the expression of full emotional and intellectual enthusiasm for the story at hand.
Tomorrow’s inventors and scientists are today’s curious young children—as long as those children are given ample chances to explore and are guided by adults equipped to support them. STEM Starts Early is the culmination of a deep inquiry supported by the National Science Foundation that aims to better understand the challenges to and opportunities in STEM learning as documented in a review of early childhood education research, policy, and practice and encourages collaboration between pivotal sectors to implement and sustain needed changes. The report features research by the FrameWorks
DATE:
TEAM MEMBERS:
Elisabeth McClureLisa GuernseyDouglas ClementsSusan Nall BalesJennifer NicholsNat Kendall-TaylorMichael Levine