Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data
DATE:
TEAM MEMBERS:
Remy DouHeidi CianZahra HazariPhilip SadlerGerhard Sonnert
Stark inequities evident in the low representation of Black women in Science, Technology, Engineering, Mathematics, and Medicine (STEMM) careers persist despite considerable investment in the diversification of the education-to-workplace STEMM pipeline. College participation rates of Black women measure 4-5% of all degrees in biological and physical sciences, 2-3% of degrees in computer science and math, and roughly 1% in engineering. Ultimately, Black women make up only 2.5% of the workforce in STEMM-related fields, indicating that they chronically experience stalled professional advancement. Because there are so few longitudinal studies in either formal or informal settings, educators and researchers lack critical insights into why BA/BS credentialed Black women drop out of STEMM careers at high rates upon entering the workforce. This Research in Service to Practice project will conduct a longitudinal examination of key professional outcomes and life trajectories among adult Black women who enrolled Women in Natural Sciences (WINS), a 40-year-old out-of-school time (OST) high school STEM enrichment program. Prior research on WINS documents that alumnae outperform national averages on all metrics related to STEMM advancement up through college graduation. This study will test the hypothesis that such success continues for these cohorts as they pursue life goals and navigate the workforce. Findings from this study will promote the progress of science, pivotal to NSF’s mission as the project builds knowledge about supportive and frustrating factors for Black women in STEMM careers. Strategic impact lies in the novel participant-centered research methods that amplify Black women’s voices and increase both accuracy and equity in informal STEM learning research.
This research probes the experiences of Black women at a critical phase of their workforce participation when BS/BA credentialed WINS alumnae establish their careers (ages 26-46). The team will conduct a longitudinal comparative case study of outcomes and life trajectories among 20 years of WINS cohorts (1995-2015). Research questions include (1) What do the life-journey narratives of WINS alumnae in adulthood reveal about influential factors in the socio-cultural ecological systems of Black women in STEMM? (2) What are the long-term outcomes among WINS women regarding education, STEMM and other careers, socio-economic status, and STEMM self-efficacy and interest? How do these vary? (3) What salient program elements in WINS are highlighted in alumnae narratives as relevant to Black women’s experiences in adulthood? How do these associations vary? (4) How do selected outcomes (stated in RQ2) and life story narratives among non-enrolled applicants compare to program alumnae? and (5) How do salient components in the WINS program associate with socio-cultural factors in regard to Black women’s careers and other life goals? Participants include 100 Black WINS alumnae as an intervention group and a matched comparison group of 100 Black women who successfully applied to the WINS program but did not or could not enroll. Measurable life outcomes and life trajectory narratives with maps of experiences from both groups will be studied via a convergent mixed methods design inclusive of quantitative and qualitative analyses. Comparisons of outcomes and trajectories will be made between the study groups. Further, associations between alumnae’s long-term outcomes and how they correlate their WINS experiences with other socio-cultural factors in their lives will be identified. It is anticipated that findings will challenge extant knowledge and pinpoint the most effective characteristics of and appropriate measures for studying lasting impacts of OST STEMM programs for Black women and girls. The project is positioned to contribute substantially to national efforts to increase participation of Black women in STEMM.
DATE:
-
TEAM MEMBERS:
Ayana Allen-HandyJacqueline GenovesiLoni Tabb
Science identity has been shown to be a necessary precondition to academic success and persistence in science trajectories. Further, science identities are formed, in large part, due to the kinds of access, real or perceived, that (racialized) learners have to science spaces. For Black and Latinx youth, in particular, mainstream ideas of science as a discipline and as a culture in the US recognize and support certain learners and marginalize others. Without developing identities as learners who can do science, or can become future scientists, these young people are not likely to pursue careers in any scientific field. There are demonstrable links between positive science identities and the material and social resources provided by particular places. Thus, whether young people can see themselves as scientists, or even feel that they have access to science practices, also depends on where they are learning it. The overarching goal of this project is to broaden participation of Black and Latinx youth in science by deepening our understanding of both science identities and how science learning spaces may be better designed to support the development of positive science identities of these learners. By deepening the field’s knowledge of how science learning spaces shape science identities, science educators can design more equitable learning spaces that leverage the spatial aspects of program location, culturally relevant curriculum, and participants’ lived experiences. A more expansive understanding of positive science identities allows educators to recognize these in Black and Latinx learners, and direct their continued science engagements accordingly, as positive identities lead to greater persistence in science. This project is a collaboration between researchers at New York University and those at a New York City informal science organization, BioBus. It is funded by the Advancing Informal STEM Learning (AISL) Program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
This participatory design research project will compare three different formats, in different settings, of afterschool science programming for middle schoolers: one located in a lab space on the campus of a nearby university, one located in the public middle school building of participating students, and one aboard a mobile science lab. For purposes of this study, the construct of “setting” refers to the dimensions of geographic location, built physical environment, and material resources. Setting is not static, but instead social and relational: it is dynamically (co)constructed and experienced in activity by individuals and in interaction by groups of individuals. Therefore, the three BioBus programming types allow for productive comparison not only because of their different geographic locations, built environments, and material resources (e.g., scientific tools), but also the existing relationships learners may have with these places, as well as the instructional designs and pedagogical practices that BioBus teaching scientists use in each. This project uses a design-based research approach to answer the following research questions: (1) How do the settings of science learning shape science identity development? What are different positive science identities that may emerge from these relationships? And (2) What are ways to leverage different spatial aspects of informal science programming and instruction to support positive science identities? The study uses ethnographic and micro-analytic methods to develop better understandings of the relationships between setting and science identity development, uncover a broad range of types of positive science identities taken up by our Black and Latinx students, and inform informal science education to design for and leverage spatial aspects of programming and instruction. Findings will contribute to a systematic knowledge base bringing together spatial aspects of informal science education and science identity and identity development, and provide new tools for informal science educators, including design principles for incorporating spatial factors into program and lesson planning.
DATE:
-
TEAM MEMBERS:
Jasmine MaLatasha WrightRoya Heydari
Increasing the diversity of the Science, Technology, Engineering, and Mathematics (STEM) workforce hinges on understanding the impact of the many related, pre-college experiences of the nation’s youth. While formal preparation, such as high school course-taking, has a major influence, research has shown that out-of-school-time activities have a much larger role in shaping the attitudes, identity, and career interests of students, particularly those who are members of groups historically underrepresented in STEM fields (Black, Indigenous, Latinx, and/or Pacific Islander). A wide range of both innovative adult-led (science clubs, internships, museum-going, competitions, summer camps) and personal-choice (hobbies, family talk, games, simulations, social media, online courses) options exist. This project studies the variety and availability such experiences to pre-college students. The project is particularly interested in how community cultural capital is leveraged through informal activities and experiences, drawing upon the “funds of knowledge” that culturally diverse students bring to their STEM experiences (e.g., high aspirations, multilingual facility, building of sustaining social networks, and the capacity to challenge negative stereotyping). This study has the capability to begin to reveal evidence-based measures of the absolute and relative effectiveness of promising informal educational practices, including many developed and disseminated by NSF-funded programs. Understanding the ecology of precollege influencers and the hypotheses on which they are based, along with providing initial measures of the efficacy of multiple pathways attempting to broaden participation of students from underrepresented groups in STEM majors and careers, will aid decision-making that will maximize the strategic impact of federal and local efforts.
The project first collects hypotheses from the wide variety of stakeholders (educators, researchers, and students) about the kinds of experiences that make a difference in increasing students’ STEM identity and career interest. Identifying the descriptive attributes that characterize opportunities across individual programs and validating a multi-part instrument to ascertain student experiences will be carried out through a review of relevant literature, surveying stakeholders using crowdsourced platforms, and through in-depth interviews with 50 providers. A sample of 1,000 students from 2- and 4-year college and universities, drawn from minority-serving institutions, such as Historically Black Colleges, Hispanic Serving Institutions, and Tribal Colleges and Universities will serve to establish the validity and reliability of the derived instrument and provide estimates of the availability and frequency of involvement. Psychometric methods and factor analysis will guide us in combining related variables into indices that reflect underlying constructs. Propensity score weighting will be employed for estimating effects when exposure to certain OST activities is confounded with other factors (e.g., parental education, SES). Path models and structural equation models (SEM) will be employed to build models that use causal or time related variables, for instance, students’ career interests at different times in their pre-college experience. The study goes beyond evaluation of individual experiences in addressing important questions that will help policy makers, educators, parents, and students understand which OST opportunities serve the diverse values and goals of members of underrepresented groups, boosting their likelihood of pursuing STEM careers. This project is co-funded by the Advancing Informal STEM Learning (AISL) and EHR CORE Research (ECR) programs.
The Dunes Center will provide in-class instruction and field trip activities focused on coastal restoration and community education on water quality for over 300 5th-graders at Guadalupe’s Kermit McKenzie Intermediate School. Through science experiments and hands-on experiences, students will learn how ecosystems function and explore watershed characteristics. Intended to supplement current local science education and reach underserved, rural, Latinx students, the “Explore the Coast” program will help students understand how human actions can affect the environment, promote pollution prevention in the community, and aspire to higher education in the field of science.
The Children's Museum at La Habra's Lil' Innovators Early Childhood STEM project will increase STEM skill and engagement among early childhood preschool teachers, disadvantaged preschoolers, and their parents. Delivered in partnership with three of La Habra's Head Start and California State Preschool program schools, the project will provide 224 preschoolers and 20 teachers with a year-long program offering increased developmental skills in STEM for underserved, low-income Hispanic students who are primarily English Language Learners. Teacher outcomes will include improved strategies for teaching STEM and increased teaching quality of STEM subjects. Parent outcomes include increased belief in the importance of STEM and increased ability to support their child's STEM learning. The standards-based education project will improve the museum's ability to serve its public by creating a community of practice consisting of a network of administrators, educators, and evaluators who will work together to improve the quality of STEM education for the youngest learners in this academically-challenged community.
In this paper, we report ethnicity trends in student participation and experience in high school science and engineering fair (SEFs). SEF participation showed significant ethnic diversity. For survey students, the approximate distribution was Asian-32%; Black-11%; Hispanic-20%; White-33%; Other-3%. Comparing the SEF level at which students competed from school to district to region to state levels, we observed that black students made up only 4.5% of the students who participated in SEF beyond the school level, whereas students from other ethnic groups were more equally represented at all
The call for more science, technology, engineering, and mathematics (STEM) education taking place in informal settings has the potential to shape future generations, drive new innovations and expand opportunities. Yet, its power remains to be fully realized in many communities of color. However, research has shown that using creative embodied activities to explore science phenomena is a promising approach to supporting understanding and engagement, particularly for youth who have experienced marginalization. Prior pilot work by the principal investigator found that authentic inquiries into science through embodied learning approaches can provide rich opportunities for sense-making through kinesthetic experience, embodied imagining, and the representation of physics concepts for Black and Latinx teens when learning approaches focused on dance and dance-making. This Research in Service to Practice project builds on prior work to better understand the unique opportunities for learning, engagement, and identity development for these youth when physics is explored in the context of the Embodied Physics Learning Lab Model. The model is conceptualized as a set of components that (1) allow youth to experience and utilize their intersectional identities; (2) impact engagement with physics ideas, concepts and phenomena; and (3) lead to the development of physics knowledge and other skills. The project aims to contribute to more expansive definitions of physics and physics learning in informal spaces. While the study focuses primarily on Black and Latinx youth, the methods and discoveries have the potential to impact the teaching of physics for a much broader audience including middle- and high-school children, adults who may have been turned off to physics at an earlier age, and undergraduate physical science majors who are struggling with difficult concepts. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
The research is grounded in sociocultural perspectives on learning and identity, embodied interaction and enactive cognition, and responsive design. The design is also informed by the notion of “ArtScience” which highlights commonalities between the thinking and making practices used by artists and by scientists and builds on the theoretical philosophy that all things can be understood through art or through science but integrating the two lenses allows for more complete understandings. Research will investigate the relationship between embodied learning approaches, design principles, and structures of the Embodied Physics Learning Lab model using the lenses of physics, dance, and integrated ArtScience to better understand the model. The project employs design-based research to address two overarching research questions: (1) What unique opportunities for learning, engagement, and identity development for Black and Latinx youth occur when physics is explored in the context of the Embodied Physics Learning Lab Model? and (2) How do variations in site demographics and site implementation influence the impact and scalability of the Learning Lab model? Further, the inquiry will consider (a) how youth experience and utilize their intersectional various identities in the context of the activities, structures, and essential elements of the embodied physics learning lab; (b) how youth's level of physics engagement changes depending on which embodied learning approaches and essential element structures are used; (c) the physics knowledge and other skills youth attain through the set of activities; and (d) how, if at all, the embodied learning approaches engage youth in thinking about their own agency as STEM doers. An interdisciplinary team of researchers, choreographers, and youth along with community organizations will co-design and implement project activities across four sites. Approximately 200 high school youth will be engaged; 24 will have the role of Teen Thought Partner. Through three iterative design cycles of implementation, the project will refine the model to investigate which elements most affect successful implementation and to identify the conditions necessary for scale-up. Data will be collected in the form of video, field notes, pre- and post- interviews, pre- and post- surveys, and artifacts created by the youth. Analyses will include a combination of interaction analysis, descriptive data analysis, and movement analysis. In addition to the research findings and explication of the affordances and constraints of the model, the project will also create a curricular resource, including narrative text and video demonstrations of physics concepts led by the teen thought partners, video case training modules, and assessment tools.
DATE:
-
TEAM MEMBERS:
Folashade Cromwell SolomonDionne Champion
In order for children to identify with STEM fields, it is essential that they feel there is a place within STEM for individuals “like them.” Unfortunately, this identification is difficult for Hispanic/Latine youths because of lack of representation and even stereotyping that is widespread in educational institutions in the United States. Some research has been done, though, that suggests there is promise in understanding the ways that parents help children see themselves as “STEM people” in spite of these obstacles. Building on this work, we present some of our own research on the experiences