Skip to main content

Community Repository Search Results

resource project Public Programs
Utah Valley University (UVU) with partners Weber State University (WSU) and American Indian Services (AIS) are implementing UTAH PREP (PREParation for STEM Careers) to address the need for early preparation in mathematics to strengthen and invigorate the secondary-to-postsecondary-to-career STEM pipeline. As the preliminary groundwork for UTAH PREP, each partner currently hosts a PREP program (UVU PREP, WSU PREP, and AIS PREP) that identifies low-income, under-represented minority, first-generation, and female students entering seventh grade who have interest and aptitude in math and science, and involves them in a seven-week, three-year summer intensive program integrating STEM courses and activities. The course content blends skill-building academics with engaging experiences that promote a clear understanding of how mathematical concepts and procedures are applied in various fields of science and engineering. Courses are enhanced through special projects, field trips, college campus visits, and the annual Sci-Tech EXPO. The purpose of the program is to motivate and prepare participants from diverse backgrounds to complete a rigorous program of mathematics in high school so that they can successfully pursue STEM studies and careers, which are vital to advancing the regional and national welfare.

UTAH PREP is based on the TexPREP program that originated at the University of Texas at San Antonio and which was named as one of the Bright Spots in Hispanic Education by the White House Initiative on Educational Excellence for Hispanics in 2015. TexPREP was adapted by UVU for use in Utah for non-minority serving institutions and in regions with lower minority populations, but with great academic and college participation disparity. With NSF funding for a two-year pilot program, the project partners are building UTAH PREP through a networked improvement community, collective impact approach that, if demonstrably successful, has the ability to scale to a national level. This pilot program's objectives include: 1) creating a UTAH PREP collaboration with commitments to a common set of objectives and common set of plans to achieve them; 2) strengthening existing PREP programs and initiating UTAH PREP at two or three other institutions of higher education in Utah, each building a sustainable local support network; 3) developing a shared measurement system to assess the impact of UTAH PREP programs, adaptations, and mutually reinforcing activities on students, including those from groups that are underrepresented in STEM disciplines; and 4) initiating a backbone organization that will support future scaling of the program's impact.
DATE: -
TEAM MEMBERS: Daniel Horns Andrew Stone Violeta Vasilevska
resource project Professional Development, Conferences, and Networks
A partnership of institutions and organizations from public and private sectors, all with an established record in advancing Hispanics in higher education, will form a networked community across regions of the United States with significant Hispanic populations to collectively adapt and adopt proven practices and apply them throughout the higher education system of two-year colleges and baccalaureate-, master's-, and doctorate-granting universities. The partnership builds on the successful NSF-funded Computing Alliance of Hispanic-Serving Institutions (CAHSI) that has emerged as a significant pipeline of new recruits into computing graduate studies, industry, and the professoriate throughout the nation. Even through the Hispanic population has reached 17% nationally, a mere 4% STEM Master's and 3% STEM doctorate degrees are awarded nationwide to Hispanics in 2012-2013. The desperate need to reach parity is clear. The shared purpose and bold vision of the effort is to achieve parity in the number of Hispanics who complete computation-based graduate studies. The focus will be on targeting the pool of talented students at Hispanic-Serving Institutions (HSIs) who, for various reasons, do not choose to continue on STEM educational and career pathways. The efforts will focus on transitioning Hispanic students from associate degree programs to baccalaureate programs, and from baccalaureate programs (regardless of where they began their studies) to completion of graduate degrees.

The project will establish a common agenda that guides the vision and strategy for collective impact, conduct data collection to longitudinally track student movement across campuses, and launch a multi-site pilot to test feasibility of the full-scale plan and process for change. While prior research has identified strategies for increasing graduate program completion rates for underrepresented minorities, little attention has been paid to the role of HSIs in reducing attrition. Attention to HSIs is a critical element in developing successful pathways to STEM careers. The networked community will involve social scientists across the different regions in research on Hispanic graduate program completion, to complement existing research on undergraduate completion. Developing a comprehensive, scalable model for cross-institutional advancement of students, in particular the combination of a bilingual and bicultural student body with unique needs, is critical to grow the STEM pipeline. Through a pilot, the project will engage two-year colleges and universities to begin the initial investigation on the impact of building strong student identity, student belonging, advocacy, and preparation on accelerating the number of students entering, persisting in the major, and considering, entering, and ultimately completing graduate studies in computational areas.
DATE: -
TEAM MEMBERS: Ann Gates Marjorie Zatz Mohsen Beheshti Enrico Pontelli Aaron Velasco
resource project Media and Technology
Part I

Although major growth in engineering and computing jobs is expected in the next 10 years, students are not majoring in sufficient numbers to meet this demand. These impending workforce demands cannot be met without developing the skills of racial and ethnic minorities: however, Hispanics and Black/African Americans make up only a small percentage of doctoral students in the United States. The goal of the Consortium of Minority Doctoral Scholars (CMDS) Design and Development Launch Pilot is to broaden the participation of minorities in these fields. This pilot project will create a data portal that will allow the research team to study and understand the efficacy of various mentoring strategies that might be piloted across institutions and minority doctoral scholars programs.

Part II

The Consortium of Minority Doctoral Scholars (CMDS) will unite three of the nation's oldest and most prominent minority doctoral scholars programs (GEM, SREB and McKnight); organizations with a long history of impact in increasing the numbers of minorities obtaining advanced degrees. The CMDS Design and Development Launch Pilot will conduct extensive studies using data from these three programs. The research team will conduct a mixed method analysis of the data to discover commonalities and distinctions about the three programs' mentoring efforts as compared to students not involved in the three programs. This will result in a data-driven strategy for researching the efficacy of mentoring programs that can be applied across the three CMSD member and other minority doctoral scholars programs. By utilizing data from successful programs to pinpoint effective mentoring strategies, the project will create opportunities for larger numbers of minorities to be successful. This approach has implications not only with respect to equity and access, but also the development of a workforce that will drive future advances.
DATE: -
TEAM MEMBERS: Juan Gilbert Shaundra Daily Jerlando Jackson
resource project Public Programs
The Morgan State University INCLUDES project will build on an existing regional partnership of four Historically Black Colleges and Universities that are working together to improve STEM outcomes for middle school minority male students that are local to Morgan State in Baltimore, North Carolina A&T in Greensboro, Jackson State in Mississippi, and Kentucky State in Frankfort. Additional partners include SRI International, the National CARES Mentoring Network, and the Verizon Foundation. Using the collective impact-style approaches such as planning and implementing a Network Improvement Community (NIC), developing a shared agenda and implementing mutually reinforcing activities, these partners will address two common goals: (1) Broaden the participation of underrepresented minority males in science and engineering through educational experiences that prepare them for careers in STEM fields; and (2) Create a Network Improvement Community focused on STEM achievement in minority males. Program elements include high-quality instruction in STEM content, mentoring, and professional development. The project will expand to include eight additional partners (six HBCUs and two Hispanic-Serving Institutions) and schools and districts in communities local to their campuses. The INCLUDES pilot will help scale innovations that target impacting minorities in STEM.

The project will develop STEM learning pathways for middle school minority males by harnessing the collective impact of 12 university partners, local K-12 schools and districts with which they partner, and surrounding community organizations and businesses with a vested interest in achieving common goals. Products will include a roadmap for addressing the problem through a Network Improvement Community, a website that will contribute to the knowledge base regarding effective strategies for enhancing STEM educational opportunities for minority males, and common metrics, assessments, and shared measurement systems that will be used to measure the collective impact of the Network Improvement Community.
DATE: -
TEAM MEMBERS: Jumoke Ladeji-Osias Cindy Ziker Geneva Haertel Kamal Ali Ayanna Gill Derrick Gilmore Clay Gloster
resource project Public Programs
Chemistry is an important and widely relevant field of science. However, when compared with other STEM content areas, chemistry is under-represented in U.S. science museums and other informal educational environments. This project will build, and build knowledge about, innovative approaches to delivering informal science learning activities in chemistry. The project will not only increase public interest and understanding of chemistry but also increase public perception of chemistry's relevance and increase the public's self-efficacy with respect to chemistry. This project outcomes will include a guide for practitioners along with activity materials that will be packaged into a kit, distributed, and replicated for use by informal science educators, chemists, and chemistry students at 250 sites across the U.S. The project team will reach out to organizations that serve diverse audiences and diverse geographic locations, including organizations in rural and inner-city areas. The kits will provide guidance on engaging girls, people with various abilities, Spanish speakers, and other diverse audiences, and include materials in Spanish. Written guides, training videos, and training slides will be included to support training in science communication in general, as well as chemistry in particular. This project is supported by the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings, as a part of its overall strategy to enhance learning in informal environments.

This project will take an innovative approach to develop informal educational activities and materials about chemistry. Rather than starting with content goals, the project will start with a theoretical framework drawn from research about affecting attitudes about science related to interest, relevance, and self-efficacy. A design-based research approach (DBR) will be used to apply that framework to the development of hands-on educational activities about chemistry, while also testing and modifying the framework itself. (DBR blends empirical educational research with the theory-driven design of learning environments.) Existing or new educational activities that appear to embody key characteristics defined in the framework will be tested with public audiences for their impact on visitors. Researchers and educators will determine how different characteristics of the educational activities defined in the framework affect the outcomes. The activities will be modified and tested iteratively until the investigators achieve close alignment between framework and impacts.. The project team will continue the design-based research approach both to examine groups of activities in which synergies can have impacts beyond single interactions as well as to examine varied ways of training facilitators who can also significantly affect outcomes. In this way, the project will generate knowledge about how kits of hands-on informal learning activities can stimulate attitudes of interest, relevance, and self-efficacy with respect to the neglected field of chemistry. The project teams will broadly disseminate project outcomes within the educational research, science and informal Science, Technology, Engineering and Mathematics (STEM) education communities. While this project will focus on chemistry, the strategies it will develop and test through a design-based research process will provide valuable insight into effective approaches for informal STEM education more broadly.
DATE: -
resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. 'Be a Scientist!' is a full-scale development project that examines the impact of a scalable, STEM afterschool program which trains engineers to develop and teach inquiry-based Family Science Workshops (FSWs) in underserved communities.
DATE:
TEAM MEMBERS: Tara Chklovski
resource project Public Programs
The number of Latinos and Native Americans represented in library and information science professions is extremely low. The University of Arizona School of Information Resources and Library Science will address this inequity in its Connected Learning in Digital Heritage Curation project, which focuses on archives and special collections, medical librarianship, and public librarianship. The project will educate 24 culturally competent master’s degree students to serve Latino and Native American communities in the digital world. Students will gain hands-on experience working as graduate assistants with project partners: the University of Arizona Libraries, Center for Creative Photography, Arizona Health Sciences Library, Pima County Public Library, Arizona Historical Society, Arizona State Museum, Labriola National American Indian Data Center, American Indian Film Gallery, Laboratory of Tree-Ring Research and the Arizona State Library, Archives and Public Records.
DATE: -
TEAM MEMBERS: Gina Macaluso
resource project Public Programs
Many communities across the country are developing "maker spaces," environments that combine physical fabrication equipment, social communities of people working together, and educational activities for learning how to design and create objects. Increasingly, maker spaces and maker technologies are being designed to provide extended learning opportunities for school-aged young people. Unfortunately, few youth from under-represented populations have had the opportunity to participate in these maker spaces, and many communities do not have the resources to establish facilities dedicated to making activities. This project, a collaboration of faculty at California State University, San Marcos and San Diego County Office of Education, the Vista Unified School District, and the San Diego Fab Lab, is a feasibility study that will work to address these needs by implementing and evaluating a pilot Mobile Making program in an underserved youth population. It will bring Making to four after-school programs in underserved communities in San Diego by using a van to take both equipment and undergraduate student mentors to program sites. At these sites, between 50% and 90% of the students are Hispanic or Latino and between 40% and 90% are eligible for free or reduced price lunch. The project employs a research-based approach to the design and implementation of the Mobile Making program, coupled with an evidenced-based plan for developing a model for future dissemination. Project objectives are: increasing the participants' interest, self-efficacy, and perception of the relevance of Making/STEM in everyday life; identifying and overcoming challenges associated with a Mobile Making program; developing a model for implementing and assessing Mobile Making in underserved communities; and disseminating materials and guides for practitioners. Development will be guided by five research-based principles for design of out-of-school time programs in underserved communities: access to resources; ethnically diverse near-peer leaders; authentic activities; legitimacy within the community; and ongoing input from participants. To inform program development and implementation, including continuous monitoring and adjustment throughout the two-year initiative, the evaluation component will use a mixed methods approach to study outcomes with respect to the students, their parents and the undergraduate mentors. Future work will apply the lessons learned in the project to guide implementations and study the model's applicability in other informal education settings. The dissemination plan will include publication of project findings, activities, practitioner's guides, and the model for implementing making programs in underserved communities.
DATE: -
TEAM MEMBERS: Edward Price Charles de Leone
resource research Public Programs
Deals with the success of the Rural Girls in Science Program at the University of Washington in Seattle, Washington State, which uses science to address local issues through long-term research projects. Source of funding for the program; Components of the research projects; Factors which contributed to the success of the program.
DATE:
TEAM MEMBERS: Angela Ginorio Janice Fournier Katie Frevert
resource research Public Programs
This presentation given at the 2013 Materials Research Society (MRS) Spring Meeting examines evidence for the effectiveness of STEM education programs at the National High Magnetic Field Laboratory.
DATE:
TEAM MEMBERS: Roxanne Hughes
resource project Public Programs
The University of Texas at El Paso will conduct a research project that implements and documents the impact of co-generative dialogues on youth learning and youth-scientist interactions as part of a STEM research program (i.e., Work with A Scientist Program). Co-generative dialogues seek to specifically assist with communication and understanding among collaborators. Over four years, 108 11th grade youth from a predominantly (90%) Hispanic high school will conduct STEM research with twelve scientists/engineers (e.g., chemist, civil engineer, geologist, biologist) and undergraduate/graduate students as part of 7 month-long after school program, including bi-weekly Saturday activities for 5 months followed by an intensive month-long, self-directed research project in the summer. Youth will be randomly assigned to experimental groups that include the co-generative dialogue treatment and control groups without the intervention. The scientists and their STEM undergraduate/graduate students will participate in both experimental and control groups, with different youth. Youth will receive high school credit to encourage participation and retention. The PI team hypothesizes that co-generative dialogues will result in improved learning, communication, and research experiences for both youth and scientists. Educational researchers will conduct co-generative dialogues, observations, interviews, and surveys using validated instruments to address the following research goals: (1) To investigate the impact of the treatment (co-generative dialogues) on youth knowledge, attitudes, perceptions of their experience, and their relationships with the scientists; (2) To investigate the impact of the treatment on scientists and graduate students; and (3) To identify critical components of the treatment that affect youth-scientist interactions. It is anticipated that, in addition to providing in-depth STEM research experiences for 108 youth from underrepresented groups at a critical time in their lives, the project will result in widely applicable understandings of how pedagogical approaches affect both youth learning and scientist experiences. The project also seeks to bridge learning environments: informal, formal, university and digital.
DATE: -
TEAM MEMBERS: Pei-Ling Hsu Elena Izquierdo
resource project Public Programs
The goal of this outreach program was for Chemistry at the Space-Time (CaSTL) limit to partner with the Boys and Girls Club (BGC) of Santa Ana, CA to increase their participants' interest, enthusiasm and learning outcomes in Science Technology Engineering and Math (STEM) fields, through the development of science and chemistry hands-on lessons. The Boys and Girls Club of Santa Ana serves nearly 2,700 participants each day at six sites. Ninety percent of their participants identify as Hispanic/Latino and 93% are on free or reduced lunch. Although the Boys and Girls Club offers limited STEM activities, they agreed to partner with CaSTL, a UC-Irvine NSF-funded Center for Chemical Innovation, to expand their STEM ISE activities. CaSTL, in close collaboration with both the California Science Project of Irvine (CSPI), developed 24 science lesson plans that engage participants in high-level, hands-on, and interactive lessons that expose program participants to the visualization of chemistry and physics, based on CaSTL's mission. All lessons align with the California Science Standards, are highly interactive, and do not mimic the school day. These lessons compliment the state standards, but go much further in providing the participants experimental, hands-on activities that they often do not receive in their schools, due to budget, space and time restrictions. CaSTL faculty and graduate students ensured that the lens through which CaSTL research occurs was clearly represented in the lessons. CaSTL graduate students developed one of the lessons and kit and taught the spectroscopy lesson at the club.
DATE: -
TEAM MEMBERS: Lauren Shea Elizabeth Cruz