We present a review of an after-school program that has been running at Queensborough Community College of the City University of New York for the past 5 years. The program is unique among after-school activities for high school students in several ways. First, it deliberately focuses on students who do not excel in science and math courses and students who are unsure about a college career. Second, it targets typically underrepresented minorities in the technology fields, namely blacks, Hispanics, and women. Third, it introduces these students to high-tech career options which do not require
DATE:
TEAM MEMBERS:
Amy BieberPaul MarcheseDon Engelberg
This presentation given at the 2013 Materials Research Society (MRS) Spring Meeting examines evidence for the effectiveness of STEM education programs at the National High Magnetic Field Laboratory.
This article examines the literature on Native science in order to address the presumed binaries between formal and informal science learning and between Western and Native science. We situate this discussion within a larger discussion of culturally responsive schooling for Indigenous youth and the importance of Indigenous epistemologies and contextualized knowledges within Indigenous communities.
DATE:
TEAM MEMBERS:
Bryan Mckinely Jones BrayboyAngelina Castagno
This portfolio contains the following reports: "Community Science Workshops: A Powerful and Feasible Model for Serving Underserved Youth. An Evaluation Brief"; "Community Science Workshops: Building a Bridge to Science for Urban Youth. A Descriptive Look at CSWs."; "What Do Community Science Workshops Do For Kids? The Benefits to Urban Youth."; and "CSWs by the Numbers: A Statistical Portrait of Community Science Workshops." Community Science Workshops are community-based non-profit programs that offer underserved youth living in low-income, high-minority neighborhoods a fun and safe way to
Garibay Group worked with CLO staff to conduct front‐end research with targeted Latino communities. The goal of this research was to gain an in‐depth understanding of partner communities, including both Latino families living in these communities and of organizational partners. Specifically, research focused on understanding Latino families’ cultural values and norms regarding leisure choices, attitudes toward science, use of technology, and responses to and interested in citizen science.
DATE:
TEAM MEMBERS:
Cecilia GarabayCornell Lab of Ornithology
This is a collaborative research project between Montana State University (MSU), Bozeman, USA and Gorno-Altaisk State University (GASU), Altai Republic, Russian Federation. In this NSF International Research Experiences for Students project MSU students will travel to the Altai Republic and work with faculty and students at Gorno-Altaisk University to conduct research related to native language use in learning ecological sciences in informal settings. Student researchers will conduct individual studies related to the project theme of science learning in ecological contexts. This project will help students learn how to conduct educational research related to the ecological learning experiences of indigenous youth (ages12-16) and the use and influence of native language in learning about environment. This research directly addresses the results of our prior NSF supported work that identified shared issues of indigenous people, natural resources and the decline of native language use among underserved populations in the Altai and Yellowstone systems. This project contributes significantly to our emerging understanding of science learning in informal settings. It addresses a unique conception of ecological learning in three dimensions; personal, community and cultural perspectives. Research and education objectives align with modern conceptualizations of informal science learning as proposed by the National Academies of Science (2009). The MSU-GASU collaboration provides a holistic view of science learning and will unite diverse intellectual resources and research efforts in unique ecological and social systems. Both the Yellowstone and Altai mountain systems are of global concern as part of worldwide natural and cultural resources impacted by pervasive development, recreation and tourism activities and climate change. The underlying theoretical foundation for learning proposed in this research project is the basis for effective approaches to enable isolated rural populations to contribute traditional knowledge and wisdom to contemporary issues related to world-wide ecological and cultural issues including global climate change. Aspects of sustainability practices that are embedded in the knowledge and social processes of both marginalized and dominant societies will be better understood and taken into consideration for future research and education activities. Research outcomes will contribute to more effective informal, place-based and experiential science learning to help empower communities and decision makers in meeting challenges of sustainability. Inevitably, we expect this work to extend our understanding of science learning related to critical natural and cultural resources and their management. An understanding of how, why and where learning takes place will help extend the US and international research and education agendas related to informal science learning, natural and cultural resource management and sustainability.
Non-technical part.
This is a collaborative research project between Montana State University (MSU), Bozeman, USA and Gorno-Altaisk State University (GASU), Altai Republic, Russian Federation. In this NSF International Research Experiences for Students project MSU students will travel to the Altai Republic and work with faculty and students at Gorno-Altaisk University to conduct research related to native language use in learning ecological sciences in informal settings. Student researchers will conduct individual studies related to the project theme of science learning in ecological contexts. This project we will help students learn how to conduct educational research related to the ecological learning experiences of indigenous youth (ages12-16) and the use and influence of native language in learning about environment. Three cohorts of five MSU students will travel to the Altai Republic for eight weeks in the summers of 2013, 2014 & 2015. MSU students will comprise a research team with GASU science, education and language faculty to conduct research in the city of Gorno-Altaisk, two medium size villages such as Onguday and two small villages such as Karakol. We expect to work with youth in each setting and interview a representative sample at each site. As a research team we expect to gain a better understanding of how indigenous youth use native Altai language in informal settings to learn about environment. We expect to compare sights within the study. As part of our larger research interests in ecological learning and native people, we will conduct a similar comparative study in the Yellowstone Ecosystem with Native American youth. The studies associated with this project will add to our understanding about the extent and nature of native language use to learn science in underserved populations in very sensitive and unique ecological and cultural settings.
DATE:
-
TEAM MEMBERS:
Michael BrodyClifford MontagneArthur BangertChristine StantonShane Doyle
This Pathways project from the Ocean Discovery Institute (ODI) seeks to develop and pilot a program model designed to fill an identified gap in citizen science research and practice literature: how to effectively engage and better understand how to foster participation among people from under-represented groups in citizen science research. The ODI model is designed around six principles: (1) leaders who are reflective of the community, (2) science that is locally relevant, (3) guided, as opposed to self-guided, experiences, (4) direct interactions with scientists, (5) progressively increasing responsibilities for participants who express interest, and (6) removing barriers to participation, such as transportation, language, family involvement and access to technology. The project addresses environmentally degraded, crime-ridden local canyons, a locally relevant STEM-related issue, and leverages the Southern California Coastal Water Research Project's (SCCWRP) regional citizen science effort focused on identifying the sources and pathways of trash through regional watersheds. The scientific research components of the project focus on four canyons in the area, employing sampling methods developed by SCCWRP. Youth who are part of other ODI programs and who have demonstrated leadership and interest in science, work with the project team to scaffold family and youth participation in project activities taking place during afterschool and weekend time. Based on continued participation in the project, community participants can become more involved in the project, starting as "new scientists" and moving through "returning scientists" to "expert scientists" roles. The project evaluation seeks to identify the role and importance of the components of the proposed model with respect to participation, retention, and learning by participants from groups under-represented in STEM. The dissemination products of this Pathways project include a white paper describing the model and lessons learned as well as presentations to community groups and education and citizen science practitioners. Based on insights from the iterative approach to the model during this Pathways study, a subsequent full-scale development project would seek to engage citizen science projects around the nation in adapting the model to increase participation of individuals from groups underrepresented in STEM, including building out ODI's citizen science programming.
DATE:
-
TEAM MEMBERS:
Lindsay GoodwinRoxanne RuzicTheresa Sinicrope Talley
This full-scale project addresses the need for more youth, especially girls, to pursue an interest in engineering and eventually fill a critical workforce need. The project leverages museum-based exhibits, girls' activity groups, and social media to enhance participants' engineering-related interests and identities. The project includes the following bilingual deliverables: (1) Creative Solutions programming will engage girls in group oriented engineering activities at partner community-based organizations, where the activities highlight altruistic, personally relevant, and social aspects of engineering. Existing community groups will use the activities in their regular meeting structure. Visits to the museum exhibits, titled Design Your World will reinforce messages; (2) Design Your World Exhibits will serve as a community hub at two ISE institutions (Oregon Museum of Science and Industry and the Hatfield Marine Science Center). They will leverage existing NSF-funded Engineer It! (DRL-9803989) exhibits redesigned to attract, engage, and mobilize a more diverse population by showcasing altruistic, personally relevant, and social aspects of engineering; (3) Digital engagement through targeted use of social media will complement program and exhibit content and be an online portal for groups engaged in the project; (4) A community action group (CAG) will provide professional development opportunities to stakeholders interested in girls' STEM identity (e.g. parents, STEM-based business professionals) to promote effective engineering messaging throughout the community and engage them in supporting project participants; and (5) Longitudinal research will explore how girls construct and negotiate engineering-related identities through discourse across the project activities and over time.
The project is designed to engage Hispanic students in grades K-5 in STEM in afterschool programs within community-based organizations (CBOs). The project builds on the foundation of an NSF-supported afterschool science program--APEX (Afterschool Program Exploring Science). In collaboration with National Council of La Raza (NCLR), and ASPIRA, the project adapts APEX into a bilingual English/Spanish format and, using a train the trainer model, disseminates it nationally, using a train the trainer model. Each of the ten local project sites will build on a partnership between a science museum and a CBO affiliate of NCLR or ASPIRA. The project is designed to: (1) Build the organizational capacity of partner science museums to work with CBOs and the Hispanic community. (2) Strengthen links between science museums and Hispanic serving CBOs in their communities. (3) Engage the expertise, involvement, and collaboration of national Hispanic-serving organizations, NCLR and ASPIRA, in STEM education. (4) Increase the engagement of Hispanic children and families in STEM. The project evaluation will investigate how effectively the project builds the organizational capacity of partner museums and CBOs in engaging Hispanic children and families in STEM; the types and strength of science museum/CBO partnerships; the effectiveness of the project in increasing Hispanic student and family engagement in STEM, and the types of contributions the project makes to the field of informal STEM learning. The evaluation will use qualitative and quantitative methods, including surveys, interviews, case studies, social network and collaboration analysis, observations, activity tracking, embedded assessment, photo elicitation, and focus groups.
Techbridge has proposed a broad implementation project that will scale up a tested multi-faceted model that increases girls' interest in STEM careers. The objectives of this project are to increase girls' engineering, technology, and science skills and career interests; build STEM capacity and sustainability across communities; enhance STEM and career exploration for underrepresented girls and their families; and advance research on the scale-up, sustainability, and impact of the model with career exploration. The Techbridge approach is grounded in Eccles' expectancy value model, and helps bridge critical junctures as girls transition from elementary to middle school and middle school to high school, immersing participants in a network of peers and supportive adults. Techbridge targets girls in grades 5-12 with a model that includes five components: a previously tested and evaluated curriculum, career exploration, professional development for staff and teachers, family engagement, and dissemination. The inquiry-based curriculum introduces electrical engineering and computer science through engaging, hands-on units on Cars and Engines, Green Design, and Electrical Engineering. The Techbridge model will be enhanced to include a central repository for curriculum and support materials, electronic girl-driven career exploration resources, an online learning community and video tools for staff, and customized family guides. Project deliverables include the dissemination of the enhanced model to three cities, 24 school sites and teachers, 2,000 girls, and over 600 role models. A supplementary research component will study the broad implementation of the Techbridge model by examining the fidelity of implementation and the program's impact on girls' STEM engagement and learning. The research questions are as follows: (1) To what extent and how do new program sites demonstrate adherence to the Techbridge program model? (2) Do new sites experience similar or increased participant responsiveness to Techbridge programming with regard to scientific learning outcomes, career awareness, attitude and interest in engineering? (3)How are changes experienced by girls sustained over time, if at all? (4) To what extent and how do new sites balance instilling the Techbridge essentials, those critical components Techbridge identifies as essential for success, with the need for local adaptation and ownership of the program? and (5) Given the potential for customization in local communities, do new sites maintain programmatic quality of delivery experienced at the original site? If so, what are elements essential to success regarding quality delivery? The mixed-methods study will include document analysis, embedded assessments, participant survey scales, and observations. Qualitative data methods include interviews with teachers, role models, staff and focus groups with girls. A project evaluation will also be conducted which investigates project outcomes for participants (girls, teachers, role models, and families) and fidelity of the implementation and enhancements at expansion sites, using a quasi-experimental approach. Career and learning outcomes for girls will be determined using embedded assessments, portfolios, surveys, school data, and previously validated instruments such as the Career Interest Questionnaire and the Modified Attitudes towards Science Inventory. The Managing Complex Change model is used as a framework for the project evaluation for the purpose of examining factors related to the effectiveness of scaling. The dissemination of research and evaluation findings will be achieved through the use of publications, blogs, social media, and conferences. It is anticipated that this project will broaden the participation of Hispanic, African-American, and English language learner girls, build capacity for STEM programming and sustainability at the dissemination sites, and disseminate findings to over 1 million educators, researchers, and community members. Broader impacts include contributing to the field's understanding of how virtual role models and field trips can engage young women, increase corporate advocacy, and engage participants in research and dissemination efforts.
This report addresses findings from the Bilingual Exhibit Research Initiative (BERI), a National Science Foundation-‐funded project (NSF DRL#1265662) through the Advancing Informal STEM Learning (AISL) program. This Pathways (planning grant) project was a 3-‐year project designed to better understand current practices in bilingual exhibitions and Spanish-‐speaking visitors’ uses and perceptions of bilingual exhibitions. Responding to a lack of extensive evaluation or audience research in informal science education (ISE) bilingual interpretation, the Bilingual Exhibit Research Initiative