With this Phase I funding, the project team will develop and test a prototype of the Toddler App and Cane which is intended to improve functional and adaptive school readiness skills for toddlers with visual impairments. The prototype will include a wearable hardware-based cane that wraps around a child's waist and provides tactile and audio cues to facilitate walking, a curriculum with game activities and walking routes, and an app that provides updates to special education practitioners and parents on their children's progress. In a pilot study with 10 toddlers with visual impairments, and their teachers and parents, the researchers will examine whether the prototype functions as planned, whether toddlers are engaged while using the prototype, and if teachers and parents believe the fully developed intervention will lead to increases in independence and school readiness.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. Using hand-held mobile devices this project would test specialized Signing Glossaries for Science Exhibits (SGSE). The glossaries are developed from 5000 unique signing terms specific to the science in 6 partner institutions and designed to reach families with at least one member, ages 5-12+, who is deaf or hard of hearing and uses American Sign Language (ASL) for communication. The project would demonstrate the potential effectiveness of the venue-specific signing glossaries to enhance access to STEM learning during visits to informal STEM learning environments such as aquariums, botanical gardens, natural history museums, nature centers, science museums, and zoos.
While utilizing existing domain specific signing terms, the project will adapt and improve on their use in content specific informal science venues to increase the opportunity for the target audience to both enjoy and benefit from the wide array of informal science learning opportunities available to this group. The research should reveal how this approach might benefit those with other types of disabilities. The research questions are designed to understand both how family members might interact with a hearing disabled family member as well as how the disabled individual might learn more about a variety of STEM content in a setting that is not domain specific but uses the influence of science exhibits to inform, engage and interest members of the public generally.
Domain specific signing dictionaries have been developed, many by this PI, to address access to content specific topics in STEM. This proposal extends this concept to informal learning environments that are content specific to increase the opportunity for those with hearing disabilities to increase their capability to both enjoy informal science learning venues and to understand more of what these venues provide in terms of science learning.
The Department of Computer Science and Engineering and DO-IT IT (Disabilities, Opportunities, Internetworking and Technology) at the University of Washington propose to create the AccessComputing Alliance for the purpose of increasing the participation of people with disabilities in computing careers. Alliance partners Gallaudet University, Microsoft, the NSF Regional Alliances for Persons with Disabilities in STEM (hosted by the University of Southern Maine, New Mexico State University, and UW), and SIGACCESS of the Association for Computing Machinery (ACM) and collaborators represent stakeholders from education, industry, government, and professional organizations nationwide.
Alliance activities apply proven practices to support persons with disabilities within computing programs. To increase the number of students with disabilities who successfully pursue undergraduate and graduate degrees, the alliance will run college transition and bridge, tutoring, internship, and e-mentoring programs. To increase the capacity of postsecondary computing departments to fully include students with disabilities in coursers and programs, the alliance will form communities of practice, run capacity-building institutes, and develop systemic change indicators for computing departments. To create a nationwide resource to help students with disabilities pursue computing careers and computing educators and employers, professional organizations and other stakeholders to develop more inclusive programs and share effective practices, the alliance will create and maintain a searchable AccessComputing Knowledge Base of FAQs, case studies, and effective/promising practices.
These activities will build on existing alliances and resources in a comprehensive, integrated effort. They will create nationwide collaborations among individuals with disabilities, computing professionals, employers, disability providers, and professional organizations to explore the issues that contribute to the underrepresentation of persons with disabilities and to develop, apply and assess interventions. In addition, they will support local and regional efforts to recruit and retain students with disabilities into computing and assist them in institutionalizing and replicating their programs. The alliance will work with other Alliances and organizations that serve women and underrepresented minorities to make their programs accessible to students with disabilities. Finally they will collect and publish research and implementation data to enhance scientific and technological understanding of issues related to the inclusion of people with disabilities in computing.
DATE:
-
TEAM MEMBERS:
Richard LadnerLibby CohenSheryl BurgstahlerWilliam McCarthy
NASA’s Science Mission Directorate (SMD) explores the Earth, the Sun, our solar system, the galaxy and beyond through four SMD divisions: Earth Science, Heliophysics, Planetary Science and Astrophysics. Alongside NASA scientists, teams of education and public outreach (EPO) specialists develop and implement programs and resources that are designed to inspire and educate students, teachers, and the public about NASA science.
This special report describes NSF INCLUDES (Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science), a comprehensive initiative to enhance U.S. leadership in science and engineering discovery and innovation by proactively seeking and effectively developing science, technology, engineering and mathematics (STEM) talent from all sectors and groups in our society. By facilitating partnerships, communication and cooperation, NSF aims to build on and scale up what works in broadening participation programs to reach underserved populations
These slides were presented at the NSF Advancing Informal STEM Learning (AISL) Principal Investigators' Meeting held in Bethesda, MD from February 29-March 2, 2016. The presentation describes NSF INCLUDES, a funding opportunity that leverages collective impact strategies to broaden participation in STEM.
This document presents an overview of the quantitative survey data findings from the SL+ Equity Pathways in Informal Science Learning project. Further qualitative analysis on some of the open response data is yet to be completed. Findings are grouped into four areas: about the individuals taking part in the survey; their definitions and understanding of equity and related terms; their current equity practice; and their practices around equity work including reading, talking with colleagues and evaluation.
This briefing paper reports findings from the Youth Access & Equity in Informal Science Learning (ISL) project,
a UK-US researcher-practitioner partnership funded by the Science Learning+ scheme. Our project focuses on young people aged 11-14 primarily from under-served and non-dominant communities and includes researchers and practitioners from a range of ISL settings: designed spaces (e.g. museums, zoos), community-based (e.g. after school clubs) and everyday science spaces (e.g. science media).
The overall purpose of the Kinetic City (KC) Empower project was to examine how informal science activities can be made accessible for students with disabilities. The premise of this project was that all students, including those with disabilities, are interested in and capable of engaging in science learning experiences, if these experiences are accessible to them. Drawing on resources from Kinetic City, a large collection of science experiments, games, and projects developed by the American Association for the Advancement of Science (AAAS), the project researched and adapted five after
DATE:
TEAM MEMBERS:
Bob HirshonLaureen SummersBabette MoellerWendy Martin
Creating Museum Media for Everyone is an NSF-funded collaborative project of the Museum of Science, the WGBH National Center for Accessible Media, Ideum, and Audience Viewpoints, to further the science museum field's understanding of ways to research, develop, and evaluate digital interactives that are inclusive of all people. As a part of this effort to enable museums to integrate more accessible media into their exhibits to make them more welcoming and educational for visitors with disabilities as well as general audiences, this paper provides an overview of approaches to media accessibility
Kinetic City After School is a project supported by a prior NSF award that has produced over 80 activities in areas typical of after school activities such as computer games/simulations, hands-on activities, active play, and art and writing. This pathways project, KC Empower, will redesign and test five activities of the 80 activities currently developed by Kinetic City using a new approach to increase the representation of children and youth with disabilities in informal science settings. The project will test how universal design principles can be integrated with new technologies, not available when most after school STEM content was created, to address the needs of students with disabilities. The technologies used in the redesign include advanced mobile platforms and applications; search engines that sift through audio, image and video files; gaming input devices that respond to body movements; and information restructuring that allows multiple representations of content. The project will test how universal design guidelines will work with new technologies, in the short-term providing hands-on activities more accessible to students with disabilities, while increasing access for all students. The project is expected to lead to a full scale development project that will update all modules in Kinetic City After School. The target audience is 3rd - 5th grade students. The hypothesis of the project is that designing for disability can strengthen activities designed to increase science knowledge. Rather than making accommodations for persons with disabilities, it is the environment and design that are disabled, and it is better educational practice to rethink the activity from the point of view of all learners, including those with disabilities. Thus the use of universal design will address how best to present material for all users while influenced by the challenges presented by disabled users. The project includes the Coalition for Science After School, the Center for Applied Special Technology and the Afterschool Alliance.
This article draws from the literature on self-determination and Universal Design for Learning principles to set forth the theory that students identified as having learning disabilities may be environmentally disadvantaged and their learning difficulties exasperated by the traditional classroom learning environment. Alternatively, the digital learning environment found in simulation video games is designed so participants can be autonomous, self-directed, goal-oriented and successful. These are, coincidentally, the salient features of a technology-enhanced learning environment designed with