Researchers at Arizona State University (ASU), in partnership with the Smithsonian Museum on Main Street (MoMS), the Arizona Science Center, and eight tribal and rural museum sites around Arizona, will help educate and empower communities living in the Desert Southwest on water sustainability issues through the creation of WaterSIMmersion, a mixed reality (MR) educational game and accompanying museum exhibit.
DATE:
-
TEAM MEMBERS:
Claire LauerScotty CraigMina Johnson-GlenbergMichelle Hale
PocketMacro is a mobile app designed by the Learning Media Design Center at Carnegie Mellon University in collaboration with Stroud Water Research Center, Carnegie Museum of Natural History and Clemson University, and stakeholder input. The PocketMacro app aims to help users better identify benthic macroinvertebrates commonly found in streams and other waterways. Rockman et al Cooperative (REA), an independent educational evaluation group, designed a summative study to explore the effectiveness of the app in supporting users’ aquatic macroinvertebrate identification. The purpose of the
The Harvard Museums of Science and Culture will improve the ability of middle school teachers to use museum-based digital resources to support classroom instruction aligned with state and national science standards. Working with advisory teachers from five collaborating school districts, the museum will co-create classroom activities, based on digital resources from its collections, along with associated teacher professional development programs at three sites across urban and rural Massachusetts. The project will provide schools with access to classroom-ready resources that successfully support student learning. Teachers will learn how to use these materials, integrate them into their teaching, and enhance their skills to teach science content and practice. External evaluators will assess the project's effectiveness by measuring teacher implementation of the digital resources in the classroom, requests for information and assistance, and changes in teachers' confidence and comfort levels.
Snow: Tiny Crystals, Global Impact is a 2,500 ft traveling exhibition about: how snow shapes and sustains life on Earth, the impacts of climate change on snow, and the importance of our collective engagement to take action. The exhibition will be installed at OMSI during winter 2021-2022 for summative evaluation and learning research.
This poster was presented at the 2021 NSF AISL Awardee Meeting.
This poster was presented at the 2021 NSF AISL Awardee Meeting.
Collaborative robots – cobots – are designed to work with humans, not replace them. What learning affordances are created in educational games when learners program robots to assist them in a game instead of being the game? What game designs work best?
This poster was presented at the 2021 National Science Foundation (NSF) Advancing Informal STEM Learning (AISL) Awardee Meeting.
The project’s goal is to create media-rich citizen science experiences for girls, particularly girls of color and/or from rural areas, which broaden their STEM participation, build positive STEM identity and increase understanding of scientific concepts, while leveraging the citizen science endeavors occurring at 16 diverse National Parks.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).
Despite the rich scientific evidence of adaptations and their evolutionary basis, there are concerning public misconceptions about evolution, processes of natural selection, and adaptations in the biodiverse world. Such misconceptions begin early. Younger elementary school children are often resistant to the idea that one “kind” of animal could descend from a completely different kind of animal, and they see features as having always existed. Other misconceptions lead to an inaccurate belief that changes in individual organisms acquired in a lifetime are passed directly on to offspring or that entire populations transform as a whole. These cognitive biases and "intuitive” misunderstandings can persist into adulthood. This Innovations in Development project will counter that narrative through an informal science project focusing on the blue whale one of nature’s most spectacular stories of adaptation. It is a species that lives life at extremes: a long-distance migrator, a deep diver, an extravagant eater, the largest animal to ever exist. With its awe-inspiring size and rich mosaic of anatomical, physiological, and behavioral specializations, it serves as a bridge to an enriched understanding of universal concepts in elementary biology and can begin to dispel the deeply rooted misconceptions. The project deliverables include a giant screen film documenting the field work of research scientists studying the blue whales in the Indian Ocean and Gulf of Mexico; multi-platform educational modules and programs that will build on the blue whale content from the film for use in science center programs and rural libraries; and professional development webinars that will offer content utilization and presentation skills for ISE facilitators. Project partners include California Science Center, STAR Library Education Network, HHMI Tangled Bank Studios and SK Films.
The external evaluation studies will gather data from 20 participating rural libraries and 6 science museums. A formative evaluation of the film will be conducted in a giant screen theater setting with 75 families. After viewing a fine-cut version of the film they will complete age-appropriate post-viewing surveys on the film’s engagement, storytelling, content appeal and clarity, and learning value in communicating key science concepts. An external summative evaluation will include three studies. Study 1 will assess the implementation of the project at the 26 organizations, addressing the question: To what extent is the project implemented as envisioned in the libraries and science center settings? Baseline information will be collected, and later partners will complete post-grant surveys to report on their actual implementation of the project elements. In addition, the study will examine outcomes relating to professional development. Study 2 will be an evaluation of the film as experienced by 400 youth and parents in science centers and examining the question: To what extent does experiencing the film engage youth and parents and affect their interest, curiosity, and knowledge of blue whales, adaptations, and the scientific process? Study 3 will examine: To what extent and how does experiencing an educational module (virtual field trips, hands on activities, augmented reality) affect youth and parents’ interest, curiosity, and knowledge of adaptations and scientific process?
This project will scale up fully virtual or face-to-face STEM professional development to afterschool educators in both urban and rural settings. Given that many afterschool educators have little or no background in STEM education, there is demand for professional development that is effective, inexpensive, and accessible. This project will build national capacity in STEM education by developing the STEM skills of over 1,500 educators across multiple states and will ultimately impact over 31,000 under-represented youth in these areas. The project will also deliver robust materials through a free open-source mechanism, for use by educators anywhere and anytime. The project will broaden participation in STEM by engaging community educators in the rural parts of the nation, a critically under-represented group in STEM. It will also reach educators from low-income urban communities across three states and seven cities, targeted through strategic networks and partnerships, including organizations such as the YMCA, 4-H, and the National Afterschool Association.
This collaborative project is scaling the ACRES model (Afterschool Coaching for Reflective Educators in STEM). The model humanizes the virtual experience, making it social and engaging, and allows educators to learn, share, and practice essential STEM facilitation skills with a focus on making STEM relevant and introducing STEM careers to youth. In addition to enhancing the professional STEM skills of rural and urban educators, the project will create a national cohort of coaches with deep expertise in (i) converting in-person activities for youth into a highly engaging, choice-rich online format, (ii) engaging isolated informal educators in supportive professional learning communities, and (iii) coaching foundational research-based STEM facilitation skills that ensure these activities are pedagogically sound. A key part of this broad implementation project involves studying how to integrate an effective professional development program into afterschool organizations, including the ways afterschool programs adapt the materials to be culturally responsive to their local communities. The researchers will also study factors contributing to the longer-term sustainability of the program. The research will use surveys, interviews, direct observations, and case studies of participants to provide the field with valuable insights into scaling a program in the afterschool world.
This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for extending access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
Access to STEM information is unequal, with rural and poor communities often receiving the fewest public education science and science literacy opportunities. Rural areas also face unique STEM teaching and technology integration challenges. In fact, LatinX communities in rural areas are less likely to have access to educational resources and language supports available to LatinX communities in urban centers. This project will help address these inequities by engaging rural librarians, bilingual science communicators, polar scientists, and a technical team to create a series of five bilingual virtual reality (VR) experiences to enhance STEM understanding and appreciation. Project researchers will create a new channel for disseminating polar science, working first with rural Latinx communities in Wisconsin to create a new network between rural communities and university researchers. Involving rural librarians in the co-design of instruction process will produce new ways for rural libraries to engage their local communities and their growing Latinx populations with polar science learning experiences. Each of the five VR experiences will focus on a different area of research, using the captivating Arctic and Antarctic environments as a central theme to convey science. VR is a particularly powerful and apt approach, making it possible to visit places that most cannot experience first-hand while also learning about the wide range of significant research taking place in polar regions. After design, prototyping and testing are finished, the VR experiences will be freely available for use nationally in both rural and urban settings. Public engagement with science creates a multitude of mutual benefits that result from a better-informed society. These benefits include greater trust and more reasoned scrutiny of science along with increased interest in STEM careers, many of which have higher earning potential. The project team will partner with 51 rural libraries which are valued community outlets valuable outlets to improve science literacy and public engagement with science. The effects of this project will be seen with thousands of community members who take part in the testing of prototype VR experiences during development and scaled engagement through ongoing library programs utilizing the final VR experiences for years to come.
This project will create new informal STEM learning assessment techniques through combining prior efforts in the areas of educational data mining for stealth assessment and viewpoint similarity metrics through monitoring gaze direction. Results of the project contribute to the field of educational data mining (EDM), focusing on adopting its methods for VR learning experiences. EDM is a process of using fine grained interaction data from a digital system to support educationally relevant conclusions and has been applied extensively to intelligent tutors and more recently, educational videogames. This project will continue building on existing approaches by expanding to include the unique affordances of VR learning media, specifically gaze. The project will focus on predicting user quitting as well as assessing key learning goals within each experience and triangulate these predictive models with user observations and post-experience surveys. The eventual application of this foundational research would address the problem in assessing a learner using measures external to the experience itself (i.e., surveys) and instead provide new methods that instrument learners using only data generated by their actions within the learning context. These techniques will provide a new means for evaluating informal learning in immersive technology settings without need for explicit tagging. The findings from this project will enable a greater understanding of the relationship between a user’s experience and their learning outcomes, which may prove integral in the creation of educational interventions using VR technology.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments. This project is also supported by the Office of Polar Programs.
This guide compiles lessons learned by seven Portal to the Public Network (PoPNet) sites as well as remaining challenges and recommendations for organizations planning similar efforts in the future. PoPNet sites used the Portal to the Public Guiding Framework to build relationships with local scientists, prepare them for public engagement using Portal to the Public training materials, and feature them at public programs.