What are the effects of globalization and how are these manifested in local communities and in the learning of science there? These questions are unpacked within one local community in the United States, a place called “Uptown” where I examine the educational opportunities and pathways in science that are available for low-income Black American girls. The data comes from eight years of work both as an after-school science education program director and researcher in Uptown. The results suggest that globalization is taking hold, both in the social and economic circumstances of the community and
In what ways do urban youths’ hybridity constitute positioning and engagement in science-as-practice? In what ways are they “hybridizing” and hence surviving in a system that positions them as certain types of learners and within which they come to position themselves often as other than envisioned? To answer these questions, I draw from two ethnographic case studies, one a scientist–museum–school partnership initiative, and the other, an after-school science program for girls only, both serving poor, ethnically and linguistically diverse youth in Montreal, Canada. Through a study of the micro
The Learning and Youth Research and Evaluation Center (LYREC) is a collaboration of the Exploratorium, Harvard University, Kings College London, SRI International and UC Santa Cruz. LYREC provides technical assistance to NSF AYS projects, collects and synthesizes their impact data, and oversees dissemination of progress and results. This center builds on the Center for Informal Learning in Schools (CILS) that has developed a theoretical approach that takes into account the particular strengths and affordances of both Out of School Teaching (OST) and school environments. This foundation will permit strengthening the potential of the NSF AYS projects to develop strong local models that can generate valid and reliable data that can guide future investment, design and research aimed at creating coherence across OST and school settings. The overarching questions for the work are: 1. How can OST programs support K-8 engagement and learning in science, and in particular how can they contribute to student engagement with K-8 school science and beyond? 2. What is the range of science learning outcomes OST programs can promote, particularly when in collaboration with schools, IHE's, businesses, and other community partners? 3. How can classroom teachers and schools build on children's OST experiences to strengthen children's participation and achievement in K-12 school science Additionally, the data analysis will reveal: 1. How OST programs may be positioned to support, in particular, high-poverty, female and/or minority children traditionally excluded from STEM academic and career paths; and 2. The structural/organizational challenges and constraints that exist to complicate or confound efforts to provide OST experiences that support school science engagement, and conversely, the new possibilities which are created by collaboration across organizational fields. Data will be gathered from surveys, interviews, focus groups, evaluation reports, and classroom and school data.
The authors present an exploratory study of Black middle school boys who play digital games. The study was conducted through observations and interviews with Black American middle school boys about digital games as an informal learning experience. The first goal of the study is to understand the cultural context that Black students from economically disadvantaged inner-city neighborhoods bring to playing digital games. The second goal of the study is to examine how this cultural context affects the learning opportunities with games. Third, the authors examine how differences in game play are
DATE:
TEAM MEMBERS:
Betsy James DiSalvoKevin CrowleyRoy Norwood
The goal of the SISCOM program is to improve science achievement of economically disadvantaged middle school students in science, through the development, implementation, and dissemination of a replicable, model program for use with underserved youth, especially girls, in informal educational settings. A number of programs and interventions geared toward bolstering the STEM interest and achievement of urban youth have been implemented across the country. Key elements that have proven to be successful have been incorporated into the SISCOM program include the longevity of intervention
DATE:
TEAM MEMBERS:
Penny L. Hammrich, Ph.D.Kathy Fadigan, Ed.D.Judy Stull, Ph.D.
This project will develop a Digital Technology Institute and Youth Radio Science Desk as new components of the existing Youth Radio organization. The project's Digital Technology Institute and Science Desk will train and engage 450 low-income and underrepresented youth ages 14-24 in Los Angeles, California; Atlanta, Georgia and Washington, DC. An additional 300 youth will be engaged through quarterly community outreach programs. Youth Radio currently reaches wide audiences through traditional media such as NPR and emrging media such as podcasting and vodcasting. This project will produce 60 short-format radio programs for distribution on NPR, iTunes and MTV Interactive, as well as other distribution outlets. Organizational partners include media organizations, scientists and youth organizations around the country, universities and technical partners such as sound and animation studios.
Having developed the concept of near-peer mentorship at the middle school/high school level and utilized it in a summer science education enhancement program now called Gains in the Education of Mathematics and Science or GEMS at the Walter Reed Army Institute of Research (WRAIR), it is now our goal to ultimately expand this program into an extensive, research institute-based source of young, specially selected, near-peer mentors armed with kits, tools, teacher-student developed curricula, enthusiasm, time and talent for science teaching in the urban District of Columbia Public Schools (specific schools) and several more rural disadvantaged schools (Frederick and Howard Counties) in science teaching. We describe this program as a new in-school component, involving science clubs and lunch programs, patterned after our valuable summer science training modules and mentorship program. Our in-house program is at its maximum capacity at the Institute. Near-peer mentors will work in WRAIR's individual laboratories while perfecting/adapting hands-on activities for the new GEMS-X program to be carried out at McKinley Technology HS, Marian Koshland Museum, Roots Charter School and Lincoln Junior HS in DC, West Frederick Middle School, Frederick, MD and Folly Quarter Middle School and Glenelg HS, in Howard County, MD. Based on local demographics in these urban/rural areas, minority and disadvantaged youth, men and women, may choose science, mathematics, engineering and technology (SMET) careers with increasing frequency after participating, at such an early age, in specific learning in the quantitative disciplines. Many of these students take challenging courses within their schools, vastly improve their standardized test scores, take on internship opportunities, are provided recommendations from scientists and medical staff and ultimately are able to enter health professions that were previously unattainable. Relevance to Public Health: The Gains in the Education of Mathematis and Science (GEMS) program educates a diverse student population to benefit their science education and ultimately may improve the likelihood of successfully entry into a health or health-related professions for participating individuals. Medical education has been show to improve public health.