Purpose: This project team will fully develop and test Cyberchase Fractions Quest, a web-based mathematics game for students in grade 3 and 4. Research shows that inadequate understanding of fractions can persist from early grades through higher education, and that success in fractions predicts future success in mathematics and other STEM subjects.
Project Activities: During Phase I (completed in 2016), the team developed a prototype of Cyberchase Fractions Quest, including an interactive number line game with four levels of challenges, and a tool to scaffold learning through hints and provide encouragement as students progress. At the end of Phase I, the research team conducted a pilot study over one week with 60 grade 4 students, half of whom were randomly assigned to use the prototype and half assigned to paper-based fractions activities. Results revealed that the prototype functioned as intended, that students were engaged during gameplay, and that from pre- to post-test, students using the prototype increased significantly in their knowledge of number line problems compared to the control group. In Phase II, the team will finalize the design, artwork, and animation, the formative and summative assessment component, and learning management system. After development is complete, the researchers will carry out a pilot study to assess the usability and feasibility, fidelity of implementation, and promise of the game to improve student learning of fractions over a 5-week period. The study will include four classrooms of grade 3 students, two of which will be randomly assigned, to use the games to supplement in-class lessons while the others will use paper-based activities. The researchers will compare pre-and-post scores for student learning of fractions. The study will also track teacher implementation.
Product: The final product is Cyberchase Fractions Quest—a math game based on the storyline of PBS children's television series, Cyberchase. In the game, students in grades 3 and 4 will apply learning fractions within three contexts: areas and regions (such as shapes), sets (groups of objects), and on a number line. The game will identify specific areas where students struggle and will introduce challenges to support individualized learning. Similar to other popular game apps, student will receive immediate feedback from one to three stars based on how well they perform on each challenge as well as in-game rewards as they progress toward mastery. The game will include teacher resources for classroom implementation, and an educator dashboard presenting results.
In prior projects, including a 2015 ED/IES SBIR award, the team developed two immersive multiplayer virtual game environments. In Eco and Colony, middle school students collaboratively apply scientific practices within the virtual worlds to address challenges, such as the availability of resources and energy and maintaining clean water. With this Phase I funding, the team is developing a prototype of a teacher dashboard designed to improve classroom implementation of the virtual environments. The prototype will automatically generate reports on individual student contributions to the progress of the classroom-wide game, and track progress in mastering curricular learning goals. In the Phase I pilot research for three middle school social studies classrooms, the project team will examine whether the dashboard functions as planned, if teachers are able to use the dashboard to feasibly integrate the game within the classroom environment, and if teachers are able to use reports to track student progress.
With this Phase I funding, the project team will develop and test a prototype of the Toddler App and Cane which is intended to improve functional and adaptive school readiness skills for toddlers with visual impairments. The prototype will include a wearable hardware-based cane that wraps around a child's waist and provides tactile and audio cues to facilitate walking, a curriculum with game activities and walking routes, and an app that provides updates to special education practitioners and parents on their children's progress. In a pilot study with 10 toddlers with visual impairments, and their teachers and parents, the researchers will examine whether the prototype functions as planned, whether toddlers are engaged while using the prototype, and if teachers and parents believe the fully developed intervention will lead to increases in independence and school readiness.
DATE:
-
TEAM MEMBERS:
Elga Joffee
resourceevaluationProfessional Development, Conferences, and Networks
The purpose of this report is to summarize the findings from the Years 6-10 (2010-2015) Nanoscale Informal Science Education Network (NISE Net) summative evaluation studies and to discuss factors that contributed to the achievement of NISE Net’s goals. The report centers on summative evaluation findings, while also including major project output data and corroborating findings from the Years 6-10 NISE Net research studies. By synthesizing findings across studies, this summary evaluation report provides a high-level description of the cross-cutting and integrated knowledge generation efforts
In prior research and development, the project team developed PocketLab, a set of web-based hands-on science simulations for middle school classrooms. With this Phase I funding, the team will develop and test a prototype of CloudLab, a classroom management platform to extend the functionality of PocketLab. The prototype will include a portal so that a class of students can collaborate on experiments, a lab notebook to analyze experimental data with graphing tools, and a teacher dashboard to monitor student progress in real time. In the Phase I pilot research, with six middle school teachers and 150 students, the project team will examine whether the prototype functions as planned, whether teachers are able to integrate it within the classroom environment, and whether students are engaged while using the prototype.
In prior research and development, the project team developed a StoryWorld, a computer-based intervention for English Learners (ELs) that presents children oral and written narratives in English while also providing the information in their first language. With this Phase I funding, the team will develop and test a prototype of a web-based dashboard that provides EL teachers real-time reports on children's progress in areas including for vocabulary, comprehension, fluency, and proficiency. At the end of Phase I, in a pilot study in three first grade classrooms, the researchers will examine whether the prototype functions as planned, is easy to use, and provides information teachers can understand and use to inform their language and literacy instruction?
In prior research and development (in part supported by a 2014 ED/IES SBIR award), the project team developed Mission U.S., a series of web- and app-based games for topics in U.S. history. With this Phase I funding, the team will extend Mission U.S. by developing and testing a prototype of a virtual reality (VR) platform to immerse students in transformational moments in U.S history and to guide document-based investigations. The prototype of Mission U.S.: Time Snap will consist of VR goggles that present history content, and a website to host mission briefs to prepare student inquiry, worksheets to facilitate reflection, and an embedded assessment. At the end of Phase I in a pilot study with 30 students in one classroom, the researchers will examine whether the VR platform and the website function as planned, if students are engaged with the system, and whether student content knowledge of a historical event improves from pre- to post-test.
Online visual communication of science focuses on interactive sharing and participatory collaboration rather than simple knowledge dissemination. Visuals need to be stunning to draw people in and engage them, and a cross-media approach together with digital multimedia tools can be used to develop a clear and engaging narrative to communicate complex scientific topics. On the web both science communicators and the public manage co-create, shape, modify, decontextualise and share visuals. When it happens that low science literacy publics devoid a picture of its information assets, caption or
This article examines certain guiding tenets of science journalism in the era of big data by focusing on its engagement with citizen science. Having placed citizen science in historical context, it highlights early interventions intended to help establish the basis for an alternative epistemological ethos recognising the scientist as citizen and the citizen as scientist. Next, the article assesses further implications for science journalism by examining the challenges posed by big data in the realm of citizen science. Pertinent issues include potential risks associated with data quality
Thanks, on the one hand, to the extraordinary availability of colossal textual archives and, on the other hand, to advances in computational possibilities, today the social scientist has at their disposal an extraordinary laboratory, made of millions of interacting subjects and billions of texts. An unprecedented, yet challenging, opportunity for science. How to test, corroborate models? How to control, interpret and validate Big Data? What is the role of theory in the universe of patterns and statistical correlations? In this article, we will show some general characteristics of the use of
Although with some reluctance, social sciences now seem to have accepted the challenge deriving from the growing digitisation of communication and the consequent flow of data on the web. There are actually various empirical studies that use the digital traces left by the myriads of interactions that occur through social media and e-commerce platforms, and this trend also concerns the research in the PCST field. However, the opportunity offered by the digitisation of traditional mass media communication — the newspapers in particular — is much less exploited. Building on the experience of the