These slides were presented at an interagency meeting to discuss games and informal learning. It describes the Federal Games Guild (FGG) the White House Game Jam.
This presentation at an interagency meeting to discuss informal STEM programming. The presentation discusses the Games for Learning initiative through the Department of Education's Small Business Innovation Program (SBIR).
This catalog details the extent of NASA’s game portfolio, so that others developing new games are able to build upon the lessons learned from the past. Enclosed herein are details on fourteen individual games that have been created by or for NASA as well as two collections of hosted Flash games. Each entry has information about the game, including a screen shot, point of contact (if available), and a link to the game’s site. The games are identified by genre, NASA content or contribution, and intended audience or Entertainment Software Review Board (ESRB) rating.
DATE:
TEAM MEMBERS:
Daniel Laughlin
resourceresearchProfessional Development, Conferences, and Networks
This presentation was part of the session "A Scientist Walks into a Bar: Humor in STEM Education" at the 2014 ASTC Conference in Raleigh, NC. The session explored strategies to leverage laughter for learning based on the latest brain research coupled with with personal experiences.
DATE:
TEAM MEMBERS:
Jen Lokey
resourceresearchProfessional Development, Conferences, and Networks
This presentation was part of the "Twist and Shout: Using physical movement in STEM education" session at the 2014 ASTC Conference in Raleigh, NC. The session shared, showcased, and compiled creative new ways to incorporate physicality into the learning process.
Researchers have now acquired so much information about how the brain learns that a new academic discipline has been born, called “educational neuroscience” or “mind, brain, and education science.” This field explores how research findings from neuroscience, education, and psychology can inform our understandings about teaching and learning, and whether they have implications for educational practice. This interdisciplinary approach ensures that recommendations for applying these findings to instructional practices have a foundation in solid scientific research. It also ensures that teachers
In this interview, author and professor R. Keith Sawyer describes the importance of and interconnections among creativity, collaboration, and the science of learning. He explains that the older paradigm of schooling from 50 years ago where rote learning was predominant is no longer relevant in a knowledge-based society. We now have to prepare students for jobs that require adaptability, flexibility, and creativity. He endorses an approach to education that fosters a deeper conceptual understanding, especially through collaborative creativity. He maintains that true innovation usually comes
Recent advances in neuroscience are highlighting connections between emotion, social functioning, and decision making that have the potential to revolutionize our understanding of the role of affect in education. In particular, the neurobiological evidence suggests that the aspects of cognition that we recruit most heavily in schools, namely learning, attention, memory, decision making, and social functioning, are both profoundly affected by and subsumed within the processes of emotion; we call these aspects emotional thought. Moreover, the evidence from brain-damaged patients suggests the
DATE:
TEAM MEMBERS:
Mary Helen Immordino-YangAntonio Damasio
This report highlights advances in neuroscience with potential implications for education and lifelong learning. The report authors, including neuroscientists, cognitive psychologists and education specialists, agree that if applied properly, the impacts of neuroscience could be highly beneficial in schools and beyond. The report argues that our growing understanding of how we learn should play a much greater role in education policy and should also feature in teacher training. The report also discusses the challenges and limitations of applying neuroscience in the classroom and in learning
In this article, I review recent findings in cognitive neuroscience in learning, particularly in the learning of mathematics and of reading. I argue that while cognitive neuroscience is in its infancy as a field, theories of learning will need to incorporate and account for this growing body of empirical data.
This is a handout from a session presented at the 2008 ASTC Conference. Advances in neuroscience are revealing biological pathways underlying emotion, attention, and memory. How can this research be integrated with educational pedagogy to enhance free-choice learning? Join experts from neuroscience, education, and museums to explore practical ways in which new insights about the brain can be applied to creating museum experiences.
This report from the National Research Council explores how learning changes the physical structure of the brain, how existing knowledge affects what people notice and how they learn, the amazing learning potential of infants, and the relationship between classroom learning and learning in everyday settings such as community and the workplace. It identifies learning needs and opportunities for teachers and provides a realistic look at the role of technology in education.