Families and school-aged constituents at 30 urban, inner-city neighborhood community-based organizations and teachers and students in earth science classes in 40 middle schools. Intent: This project will prepare neighborhood and community leaders in Philadelphia to use simple but effective observation tools and NASA’s educational web content to help their inner-city Philadelphia neighbors learn about space science and technology – and about their city and themselves – by knowledgably exploring the sky. Project Goals: 1. Create multiple opportunities for inner-city children, adults and families to observe and learn about the solar system through neighborhood and city-wide events. 2. Equip CBO’s with the knowledge, skills and materials they need to make space science-related events and activities a sustained part of programming for their constituents. 3. Stimulate interest and engagement in NASA’s missions and resources among residents of traditionally underserved, inner-city neighborhoods through astronomy experiences and NASA’s websites. 4. Create and strengthen collaborative ties between The Franklin Institute, CBO’s, city residents, and local amateur astronomers. Programs/Products produced: 1. Repeatable ‘Galileoscope’ workshops and activities in 30 CBO’s 2. Solar observing activities for 30 CBO’s and 40 middle schools. 3. School assembly-type audience interactive program about observational astronomy for use in schools and community organizations. 4. Recurring neighborhood star parties facilitated through on-going partnerships with local amateur astronomy clubs. 5. Participation in city-wide star party as part of the annual Philadelphia Science Festival.
The Mars Exploration Exhibit is a new public exhibition designed to provide experiential learning opportunities for students, educators and the public while inspiring greater excitement about space science. The exhibit emphasizes the importance of STEM education and careers through practical application and inquiry-based learning. Space Center Houston, the official visitor center of Johnson Space Center, is creating the new Mars landscape simulation in partnership with the Houston Independent School District and University of Houston Clear Lake. The exhibit will offer interactive science education activities that will be delivered through distance learning and onsite instruction at Space Center Houston. Utilizing research-based practices in both formal and informal learning environments, the project will help to attract and retain students in science, technology, engineering and mathematics. It will also foster life-long learning and enthusiasm toward the promise of space science and innovation. This unique exhibit will enable students and Space Center Houston’s more than 800,000 annual visitors to increase their knowledge of Earth science and apply their learning to the Mars environment. The exhibit will also highlight the role NASA missions serve in scientific innovation. The project will build the capacity of the Greater Houston community and school-based organizations to engage girls, minorities and other underrepresented students in STEM learning. It will offer in-depth science education for low-performing and gifted/talented students, ultimately bridging achievement gaps, increasing student performance and cultivating greater interest in science. Project outcomes will include: a 1,500-square-foot Mars landscape exhibition; interactive video presentations highlighting water recovery and other environmental processes; a standards-based learning curriculum aligned with Texas Essential Knowledge and Skills (TEKS ) and National Science Standards; and a menu of K-12 experiential learning activities focused on water, air, renewable energy and other critical science topics.
DATE:
-
TEAM MEMBERS:
Janet BrownMelanie JohnsonPaul SpanaMeg Naumann
The Chicago Zoological Society (CZS) in collaboration with Eden Place Nature Center, the Fuller Park Community Corporation, and the University of Illinois at Chicago (UIC) will implement the SCIENCES Program, Supporting a Community's Informal Education Needs: Confidence and Empowerment in STEM. The primary goals of this Full Scale Development project are to broaden access to and participation in environmental science, strengthen partnerships between CZS, Eden Place, and UIC, and gain insights into the 'ecosystemic' learning model which promotes scientific literacy and agency in the community. The project targets a low-resource community with a minority audience while the secondary audience is informal science learning organizations and researchers who will advance research in informal learning. The theoretical framework for the project design draws on conservation psychology, informal science learning, civic ecology education, and urban science education to create an ecosystematic, geographically centered approach. The deliverables include research, curriculum, and engaging hands-on programs for youth, families, adults, and teachers, reaching both in-school and out-of-school audiences, in addition to the SCIENCES Implementation Network. Three potential curriculum themes to be explored are water conservation and protection, pollinators for healthy ecosystems, and community resilience to climate change. The SCIENCES project offers a comprehensive suite of engaging programs for community audiences. For example, the year-long Zoo Adventure Passport (ZAP) program for families includes hands-on experiments and field trips, while project-based learning experiences enable teens to create wetlands, design interpretive signage, and develop associated public programming. School-based programs include professional development for teachers on the Great Lakes ecosystem and invasive species. Existing programs that have been previously evaluated and demonstrated to show learning impacts will be adapted and modified to meet the goals of the ecosystemic learning model by providing multiple learning opportunities. New learning resources will also be created to support the content themes and provide continuity. The result will be a comprehensive approach that ensures deep community engagement by individuals, families, and organizations, with cohesiveness provided by the overarching content themes which broaden access to STEM learning resources and leverages partnerships. The project includes both a research and evaluation plan. The primary research question to be addressed is: How does a large informal science learning institution work with a community-based organization to support environmental scientific literacy and agency at all levels of the community? A sociocultural framework will be used for this mixed-methods case study research. Study participants include community leaders, youth, parents, teachers, and staff from Eden Place. The case study sample will include 20 focal individuals drawn from the participant groups and approximately 300 survey participants. Case study data will be triangulated with evaluation data and analyzed using a grounded theory approach. By examining changes from the baseline following the implementation of the community programs, the findings may provide insight on agency and science literacy among community members. The comprehensive, mixed-methods evaluation plan employs a quasi-experimental design and incorporates front-end, formative, and summative evaluation components. The evaluation questions address the quality of the processes and products, access to environmental science learning opportunities, environmental science literacy, sustainability, and barriers to implementation. An extensive dissemination plan is proposed with a dual emphasis on meeting stakeholders' needs at multiple levels. The evaluation and research teams will emphasize publication in peer reviewed journals and presentations at conferences for informal science education professionals. Findings will be shared with the Fuller Park community stakeholders using creative methods such as one-page research briefs written in layperson's language, videos, and recorded interviews with participants. The local project Advisory Board will also be actively involved in the dissemination of findings to community constituents. The SCIENCES National Amplification Network will be created and work collaboratively with the American Association of Zoos and Aquariums and the Metropolitan Green Spaces Alliance to disseminate the model. Collectively, the activities and deliverables outlined in this proposal will advance the discovery of sustainable models of community-based learning while the research will advance the understanding of informal learning support for science literacy and agency.
Techbridge has proposed a broad implementation project that will scale up a tested multi-faceted model that increases girls' interest in STEM careers. The objectives of this project are to increase girls' engineering, technology, and science skills and career interests; build STEM capacity and sustainability across communities; enhance STEM and career exploration for underrepresented girls and their families; and advance research on the scale-up, sustainability, and impact of the model with career exploration. The Techbridge approach is grounded in Eccles' expectancy value model, and helps bridge critical junctures as girls transition from elementary to middle school and middle school to high school, immersing participants in a network of peers and supportive adults. Techbridge targets girls in grades 5-12 with a model that includes five components: a previously tested and evaluated curriculum, career exploration, professional development for staff and teachers, family engagement, and dissemination. The inquiry-based curriculum introduces electrical engineering and computer science through engaging, hands-on units on Cars and Engines, Green Design, and Electrical Engineering. The Techbridge model will be enhanced to include a central repository for curriculum and support materials, electronic girl-driven career exploration resources, an online learning community and video tools for staff, and customized family guides. Project deliverables include the dissemination of the enhanced model to three cities, 24 school sites and teachers, 2,000 girls, and over 600 role models. A supplementary research component will study the broad implementation of the Techbridge model by examining the fidelity of implementation and the program's impact on girls' STEM engagement and learning. The research questions are as follows: (1) To what extent and how do new program sites demonstrate adherence to the Techbridge program model? (2) Do new sites experience similar or increased participant responsiveness to Techbridge programming with regard to scientific learning outcomes, career awareness, attitude and interest in engineering? (3)How are changes experienced by girls sustained over time, if at all? (4) To what extent and how do new sites balance instilling the Techbridge essentials, those critical components Techbridge identifies as essential for success, with the need for local adaptation and ownership of the program? and (5) Given the potential for customization in local communities, do new sites maintain programmatic quality of delivery experienced at the original site? If so, what are elements essential to success regarding quality delivery? The mixed-methods study will include document analysis, embedded assessments, participant survey scales, and observations. Qualitative data methods include interviews with teachers, role models, staff and focus groups with girls. A project evaluation will also be conducted which investigates project outcomes for participants (girls, teachers, role models, and families) and fidelity of the implementation and enhancements at expansion sites, using a quasi-experimental approach. Career and learning outcomes for girls will be determined using embedded assessments, portfolios, surveys, school data, and previously validated instruments such as the Career Interest Questionnaire and the Modified Attitudes towards Science Inventory. The Managing Complex Change model is used as a framework for the project evaluation for the purpose of examining factors related to the effectiveness of scaling. The dissemination of research and evaluation findings will be achieved through the use of publications, blogs, social media, and conferences. It is anticipated that this project will broaden the participation of Hispanic, African-American, and English language learner girls, build capacity for STEM programming and sustainability at the dissemination sites, and disseminate findings to over 1 million educators, researchers, and community members. Broader impacts include contributing to the field's understanding of how virtual role models and field trips can engage young women, increase corporate advocacy, and engage participants in research and dissemination efforts.
The National Girls Collaborative Project (NGCP) seeks to maximize access to shared resources within projects and with public and private sector organizations and institutions interested in expanding girls’ participation in science, technology, engineering, and mathematics (STEM). Funded primarily by the National Science Foundation, the NGCP is a robust national network of more than 3,000 girl-serving STEM organizations. Currently, 31 Collaboratives, serving 40 states, facilitate collaboration between more than 12,800 organizations who serve more than 7.7 million girls and 4.4 million boys. The NGCP occupies a unique role in the STEM community because it facilitates collaboration with all stakeholders who benefit from increasing diversity and engagement of women in STEM. These stakeholders form Regional Collaboratives, who are connected to local girl-serving STEM programs. Regional Collaboratives are led by leadership teams and advisory boards with representatives from K-12 education, higher education, community-based organizations, professional organizations, and industry. NGCP strengthens the capacity of girl-serving STEM projects by facilitating collaboration among programs and organizations and by sharing promising practice research, program models, and products through webinars, collaboration training, and institutes. This is accomplished through a tested comprehensive program of change that uses collaboration to expand and strengthen STEM-related opportunities for girls and women. In each replication state, the NGCP model creates a network of professionals, researchers, and practitioners, facilitating collaboration within this network, and delivering high-quality research-based professional development. Participating programs can also receive mini-grant funding to develop collaborative STEM-focused projects. To date, over 27,000 participants have been served in 241 mini-grant projects, and over 17,000 practitioners have been served through in-person events and webinars. The NGCP’s collaborative model changes the way practitioners and educators work to advance girls’ participation in STEM. It facilitates the development of practitioners in their knowledge of good gender equitable educational practices, awareness of the role of K-12 education in STEM workforce development, and mutual support of peers locally and across the United States.
The National Federation of the Blind (NFB), with six science centers across the U.S., will develop, implement, and evaluate the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through partnerships and companion research, the NCBYS will lead to greater capacity to engage the blind in informal STEM learning. The NCBYS confronts a critical area of need in STEM education, and a priority for the AISL program: the underrepresentation of people with disabilities in STEM. Educators are often unaware of methods to deliver STEM concepts to blind students, and students do not have the experience with which to advocate for accommodations. Many parents of blind students are ill-equipped to provide support or request accessible STEM adaptations. The NCBYS will expose blind youth to non-visual methods that facilitate their involvement in STEM; introduce science centers to additional non-visual methods that facilitate the involvement of the blind in their exhibits; educate parents as to their students' ability to be independent both inside and outside the STEM classroom; provide preservice teachers of blind students with hands-on experience with blind students in STEM; and conduct research to inform a field that is lacking in published material. The NCBYS will a) conduct six regional, two-day science programs for a total of 180 blind youth, one day taking place at a local science center; b) conduct concurrent onsite parent training sessions; c) incorporate preservice teachers of blind students in hands-on activities; and d) perform separate, week-long, advanced-study residential programs for 60 blind high school juniors and seniors focused on the design process and preparation for post-secondary STEM education. The NCBYS will advance knowledge and understanding in informal settings, particularly as they pertain to the underrepresented disability demographic; but it is also expected that benefits realized from the program will translate to formal arenas. The proposed team represents the varied fields that the project seeks to inform, and holds expertise in blindness education, STEM education, museum education, parent outreach, teacher training, disability research, and project management. The initiative is a unique opportunity for science centers and the disability population to collaborate for mutual benefit, with lasting implications in informal STEM delivery, parent engagement, and teacher training. It is also an innovative approach to inspiring problem-solving skills in blind high school students through the design process. A panel of experts in various STEM fields will inform content development. NCBYS advances the discovery and understanding of STEM learning for blind students by integrating significant research alongside interactive programs. The audience includes students and those responsible for delivering STEM content and educational services to blind students. For students, the program will demonstrate their ability to interface with science center activities. Students will also gain mentoring experience through activities paired with younger blind students. Parents and teachers of blind students, as well as science center personnel, will gain understanding in the experiences of the blind in STEM, and steps to facilitate their complete involvement. Older students will pursue design inquiries into STEM at a more advanced level, processes that would be explored in post-secondary pursuits. By engaging these groups, the NCBYS will build infrastructure in the informal and formal arenas. Society benefits from the inclusion of new scientific minds, resulting in a diverse workforce. The possibility for advanced study and eventual employment for blind students also reduces the possibility that they would be dependent upon society for daily care in the future. The results of the proposed project will be disseminated and published broadly through Web sites; e-mail lists; social media; student-developed e-portfolios of the design program; an audio-described video; and presentations at workshops for STEM educators, teachers of blind students, blind consumer groups, researchers in disability education, and museum personnel.
SciGirls CONNECT is a broad national outreach effort to encourage educators, both formal and informal, to adopt new, research-based strategies to engage girls in STEM. SciGirls (pbskids.org/scigirls) is an Emmy award-winning television program and outreach program that draws on cutting-edge research about what engages girls in science, technology, engineering and math (STEM) learning and careers. The PBS television show, kids' website, and educational outreach program have reached over 14 million girls, educators, and families, making it the most widely accessed girls' STEM program available nationally. SciGirls' videos, interactive website and hands-on activities work together to address a singular but powerful goal: to inspire, enable, and maximize STEM learning and participation for all girls, with an eye toward future STEM careers. The goal of SciGirls is to change how millions of girls think about STEM. SciGirls CONNECT (scigirlsconnect.org) includes 60 partner organizations located in schools, museums, community organizations and universities who host SciGirls clubs, camps and afterschool programs for girls. This number is intended grow to over 100 by the end of the project in 2016. SciGirls CONNECT provides mini-grants, leader training and educational resources to partner organizations. Each partner training session involves educators from a score of regional educational institutions. To date, over 700 educators have received training from over 250 affiliated organizations. The SciGirls CONNECT network is a supportive community of dedicated educators who provide the spark, the excitement and the promise of a new generation of women in STEM careers. Through our partner, the National Girls Collaborative Project, we have networked educational organizations hosting SciGirls programs with dozens of female role models from a variety of STEM fields. The SciGirls CONNECT website hosts monthly webinars, a quarterly newsletter, gender equity resources, SciGirls videos and hands-on activities. SciGirls also promotes the television, website and outreach program to thousands of elementary and middle school girls and their teachers both locally and nationally at various events.
The proposed CAREER study uses a comprehensive mixed-methods design to develop measures of motivational beliefs and family supports for Spanish and English speaking Mexican-origin youth in high school physical science. The research examines a three-part model which may provide a deeper understanding of how Mexican families support youth through their general education strategies, beliefs about physical science, and science specific behaviors. This approach incorporates motivation and ecodevelopmental theories while pursuing an innovative line of research that examines how the contributions of older siblings and relatives complement or supplement parental support. The study has four aims which are to (1) to develop reliable, valid measures of Mexican-origin adolescent motivational beliefs and family supports in relation to high school chemistry and physics, (2) to test whether family supports predict motivational beliefs and course enrollment, (3) to test how indicators in Aim 2 vary based on gender, culture, English language skills and relationship quality, and (4) to examine how family supports strengthen or weaken the relationship between school-based interactions (teachers and peer support) and the pursuit of physical science studies. Spanish and English-speaking Mexican-origin youth will participate in focus groups to inform the development of a survey instrument which will be used in a statistical measurement equivalence study of 300 high school students in fulfillment of Aim 1. One hundred and fifty Mexican high school students and their families will participate in a longitudinal study while students progress through grades 9-12 to examine Aims 2- 4. Data to be collected includes information on science coursework, adolescent motivational beliefs, supports by mothers and older youth in the family, and family interactions. All materials will be in English and Spanish. The educational and research integration plan uses a three pronged approach which includes mentoring of doctoral students, teacher outreach, and the evaluation of the ASU Biodesign high school summer internship program using measures resulting from the research. It is anticipated that the study findings will provide research-based solutions to some of the specific behaviors that influence youth motivation in physical sciences. Specifically, the study will identify youth that might be most affected by an intervention and the age of maximum benefit, as well as valid, reliable measures of youths' motivation that can used in interventions to measure outcomes. The study will also identify family behaviors that may be influenced, including education strategies for school preparation, beliefs about physical science, and sciece-specific strategies such as engaging in science activities outside school. The findings will be broadly disseminated to science teachers, scholars, and families of Mexican-origin youth. This multi-tiered approach will advance current scholarship and practice concerning Mexican-origin adolescents' pursuit of physical science.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This project is a time sensitive educational response to the 7.8 magnitude earthquake that struck Nepal on April 25, 2015 and was followed by major aftershocks. This project builds on the intense worldwide interest in that disaster by developing and distributing media resources for the public and educators explaining the scientific research into tectonic and fluvial processes of this highly vulnerable region encompassing the Himalayas of Nepal, the Ganges-Brahmaputra River Delta of Bangladesh and India, and the mountains of northeastern India. Project deliverables include PBS NewsHour broadcasts and online stories, short videos for classroom use, 3D/2D videos for public screenings in museums, Earth Magazine blogs and articles, and DVDs. Making new research understandable and accessible to the public is an important activity of the U.S. research enterprise. NSF is making a substantial investment in earth sciences research to increase knowledge of the conditions and processes that periodically cause earthquakes, landslides, and flooding. This education project leverages those investments and the public interest in the recent Nepal earthquake with a major public engagement opportunity that has the potential for reaching millions of students, teachers, and the public both in the U.S. and in other vulnerable regions.
Capitalizing on the appeal of the PBS KIDS project PLUM LANDING, PLUM RX will research and develop resources to help families and educators infuse environmental science learning into outdoor prescription programs, while ensuring they are appropriate for broad use in other informal settings. The growing outdoor prescription movement is designed to increase the amount of time children spend outside in nature. Programs are structured so that health care providers write "prescriptions" for children to engage in outdoor activity, and informal educators "fill" these prescriptions by facilitating youth and family participation in outdoor activities. There is preliminary evidence that these programs are getting kids outside, but best practices for transitioning "get outside" programs to become "get outside and learn about the environment" programs remain unidentified. PLUM RX is designed to build this knowledge and create resources that are responsive to the needs of both English and Spanish-speaking urban families. The project will work with informal educators and families through multiple cycles of implementation and revision, testing and refining PLUM LANDING resources (animations, videos, games, hands-on science activities, and support materials for informal educators and families), with the goal of designing an effective and accessible PLUM RX Toolkit for national dissemination. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM (Science, Technology, Engineering, Mathematics) learning in informal environments. The proposed research is designed to ensure that the PLUM RX Toolkit--the resources and support materials--will meet the needs of educators working in non-specialized urban settings. Education Development Center (EDC) and WGBH developers will collaborate on design-based research at three urban outdoor prescription programs serving low-income families: Philadelphia Nature Rx in Philadelphia, PA; Outdoors Rx in Boston, MA; and Portland Rx Play in Portland, OR. Moving through cycles of implementation, observation, analysis, and revision, the research team will work closely with educators, families, and developers to determine how the programmatic and structural features of the learning environment, the actions of the educators, and the intervention itself can most effectively support children and families' outdoor exploration in urban contexts. Toolkit materials will include resources for kids and families (including Spanish-speaking families) and informal educators (including those who work with families and directly with children in out-of-school settings). Directors from the three urban outdoor prescription programs will contribute to every phase of the research process, including recruiting families and youth who will participate in a weekly sequence of activities. The overarching focus of the analysis process will be on systematically describing the interaction between two dimensions of implementation: What happened during pilot implementations, and the factors that constrained or supported implementation as planned; and the quality of what happened, which will be defined with reference to the intended impacts. EDC will use a structured descriptive coding process to analyze the qualitative evidence gathered through interviews and observations during design and testing periods. Products of the research activities will include: a series of formative memos to the development team; a report mapping changes made to PLUM RX Toolkit materials in response to formative input and the intended impact of those changes; and findings regarding commonalities and differences across sites in the interaction of local contextual factors and the implementation success of the PLUM RX Toolkit. Concord Evaluation Group (CEG) will provide independent, summative evaluation of the project. Through this process, PLUM RX will build broader knowledge about how to design educational resources, geared for both families and informal educators, which respond to the unique challenges of exploring environmental science in urban environments.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This research project leverages ongoing longitudinal research to investigate whether, and if so how, youth from ages 10 to 15 in a diverse, under-resourced urban community become interested and engaged in STEM. The project addresses a global issue; fewer youth choose to major in scientific fields or take science coursework at high school or university levels. These declining numbers result in fewer STEM professionals and fewer scientifically literate citizens who are able to function successfully in an increasingly scientific and technological society. These declines are observed for youth as a whole, but are most pronounced for girls and particular non-white ethnic minorities. Data collected from youth in this community of study, including non-white ethnic minorities, mirrors this decline. NSF funding will support a five-year systematic and systemic process in which project researchers work collaboratively with existing informal and formal educational partners (e.g., museums, libraries, afterschool providers, schools) to develop sets of customized, connected, and coordinated learning interventions, in and out of school, for youth with different backgrounds, needs, and interests, all with the goal of averting or dampening this decline of STEM interest and participation during early adolescence. In addition to new research and community STEM networks, this project will result in a Community Toolkit that includes research instruments and documentation of network-building strategies for use by other researchers and practitioners nationally and internationally. This mixed methods exploratory study has two distinct but interrelated populations - youth and educators from across informal and formal institutions. To develop a clearer understanding of the factors that influence youths' STEM interest development over time, particularly among three youth STEM Interest Profiles identified in a secondary analysis (1-Dislike Math, 2-Like all STEM, 3-Dislike all STEM), the design combines surveys with in-depth interviews and observations. To study educators and institutions, researchers will combine interviews, focus groups, and observations to better understand factors that influence community-wide, data-driven approaches to supporting youth interest development. Research will be conducted in three phases with the goal of community-level change in youth STEM interest and participation. In Phase 1 (Years 1 & 2) four educational partners will develop interventions for a 6th and 7th grade youth cohort that will be iteratively refined through a design-based approach. Educational partners and researchers will meet to review and discuss interest and participation data and use these data to select content, as well as plan activities and strategies within their programs (using a simplified form of conjecture mapping). By Phase 2 (Years 3 & 4) four additional partners will be included, more closely modeling the complex system of the community. With support from researchers support and existing partners, new educational partners will similarly review and discuss data, using these to select content, as well as plan activities consistent with program goals and strategies. Additional interventions will be implemented by the new partners and further assessed and refined with a new 6th and 7th grade cohort, along with the existing interventions of the first four partners. In Phase 3 (Year 5) data will be collected on pre-post community-level changes in STEM interest and participation and the perceived effectiveness of this approach for youth. These data will inform future studies.
The Next Generation Science Standards (NGSS) identify an ambitious progression for learning energy, beginning in elementary school. To help the nation's teachers address this challenge, this project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities. Teachers will receive the science and pedagogical content knowledge they need to teach about energy in a crosscutting way across all their science curricula; students will be intellectually engaged in the practice of developing, testing, and revising a model of energy they can use to describe phenomena both in school and in their everyday lives; and formative assessment will guide the moment-by-moment advancement of students' ideas about energy. This project will develop and test a scalable model of PD that will enhance the ability of in-service early elementary teachers to help students learn energy concepts by coordinating formative assessment, face-to-face and web-based PD activities. Researchers will develop and iteratively refine tools to assess both teacher and student energy reasoning strategies. The goals of the project include (1) teachers' increased facility with, and disciplined application of, representations and energy reasoning to make sense of everyday phenomena in terms of energy; (2) teachers' increased ability to interpret student representations and ideas about energy to make instructional decisions; and (3) students' improved use of representations and energy reasoning to develop and refine models that describe energy forms and flows associated with everyday phenomena. The web-based product will contain: a set of formative assessments to help teachers to interpret student ideas about energy based on the Facets model; a series of classroom tested activities to introduce the Energy Tracking Lens (method to explore energy concept using multiple representations); and videos of classroom exemplars as well as scientists thinking out loud while using the Energy Tracking Lens. The project will refine the existing PD and build a system that supports online implementation by constructing a facilitator's guide so that the online community can run with one facilitator.
DATE:
-
TEAM MEMBERS:
Sara LacyRoger TobinNathaniel BrownStamatis VokosRachel ScherrKara GrayLane SeeleyAmy Robertson