Future Space is an educational but fun pair of planetarium programs, targeted at middle school students and then general public, to show that NASA is still in the space business! The lead institution is the Louisiana Art and Science Museum with lead production at the Houston Museum of Natural Science and science and program review through Rice University. The program has produced one excellent planetarium show "We Choose Space!" which covers the history of the space program including building the International Space Station (ISS), and actual images from our fisheye lens inside the ISS. It has been licensed to over a dozen theaters around the world and is also available for free viewing through YouTube, with a free downloadable Educator Guide. It has been translated into Spanish, Hindi, and Teluga and is being translated into Turkish. A second show "The Gravity Factor", which discusses how humans might in the future visit and exploit the planets, is being completed now. It uses surface gravity as a common theme. A dome cover was created to represent the ISS Cupola from the outside.
A Fulldome Planetarium Show for Space Science: A Pilot Project was designed to immerse and engage middle school students (grades 5-8) in space exploration, comparative planetology and the importance of sustainability on our own planet. Morehead Planetarium and Science Center at the University of North Carolina at Chapel Hill led the project, which involved the development of a 27 minute fulldome digital planetarium show and supporting curricula. The project included advisors from NASA JPL, UNC’s Physics and Astronomy Department and the Wake County North Carolina Public School System. The show draws on discoveries by the Mars Exploration Rovers, Hubble Space Telescope and other NASA missions to compare and contrast geological, atmospheric, and other physical characteristics of the places visited by the show's main characters. The aims of the show are to provide an engaging learning experience that helps students understand the criteria used to classify Solar System bodies and appreciate the environmental conditions needed to support life as we know it. Further, the show aims to communicate why Earth - with a balance of systems and resources found nowhere else - is an "amazing oasis" in our Solar System. The Standards-Based Learning Activities for Middle School support and extend the content of the Solar System Odyssey show by providing clear, detailed ideas for pre- and post- visit lessons. The lessons center on Teaching about Technology Design, Integrating Science and Language Arts, Teaching about Environmental Systems and include science experiments, creative writing and vocabulary exercises, discussion and engineering design challenges. The lessons reference specific NASA missions, and some of the activities are modeled directly after previously produced NASA educational materials. The show and curricular materials have been translated and are available in Spanish.
The Children’s Museum developed From the Blue Planet to the Red Planet: Exploring Planetary Science to provide opportunities for students in grades 4 through 8, teachers, and families to learn about Mars exploration. The Museum partnered with the Connecticut Center for Advanced Technology (CCAT) on four teacher professional development modules related to aspects of planetary science: soil and plant study, air pressure, robotic exploration, and the comparison of Mars and Earth. Teachers who attended free workshops could bring students to the Museum for classroom and planetarium experiences. The Museum received support from Central Connecticut State University and technical advice from Phoenix Project scientists at JPL. The Museum created a timeline of Mars exploration history with video clips of milestones and an accompanying quiz kiosk. CCAT created virtual Mars drive-through experiences with which visitors could explore the planet. The Travelers ScienceDome Planetarium staff wrote, directed, and animated a full-dome planetarium program about the future study of Mars that was finished in December 2012. For over two years the Museum has sponsored free, monthly Mars Madness programs during which the general public can visit the exhibit, see a Mars-related planetarium program, and test out some of the hands-on activities developed for the school groups. The Museum hoped to reach a diverse audience, especially, those people who might otherwise not afford admission. We have produced four teacher professional development guides with hands-on activities, an exhibit for our facility, a dedicated website, and a planetarium program.
Earth from Space highlights state-of-the-art NASA technology, in particular, the suite of Earth observing satellites orbiting our planet, the data they collect, and how people are using these data for research and applications. Participants learn how NASA EOS data is collected through remote sensing systems, recognize the connection between this data and the area in which they live, and recognize the relevance and value of NASA data for understanding changes in the Earth related to where they live. The project informs K–12 students and lifelong learners of our increasingly advanced technological society and prepare students to enter the STEM-related workforce with content in oceanography, geology, climatology, glaciology, geography, and meteorology. Content is presented through hands-on exhibits and dynamic demonstrations using spherical display systems at OMSI’s main museum location and through a travelling program at rural libraries, schools, and other outreach venues throughout Oregon.
Curious Scientific Investigators (CSI): Flight Adventures immerses children and families in science, technology, engineering, and math (STEM) disciplines. Launched in February 2012, the project supports NASA’s Aeronautics Research Mission Directorate (ARMD), focusing on “innovative ideas to convey the fundamentals of flight, flight technology, and NASA’s role in aeronautics.” The project’s audience includes youth ages 6-18 and the Museum’s more than 1 million annual visitors of all ages. The project’s lead agency, The Children’s Museum of Indianapolis (Museum), developed and implemented the project in Indianapolis in partnership with the Academy of Model Aeronautics and NASA Dryden Flight Research Center. The project’s goals focus on inspiring children and families to develop an interest in STEM concepts and learn about NASA’s role in science and aeronautics research and the evolution of flight, and on engaging and educating them through inquiry-based programs that facilitate understanding of STEM concepts and knowledge and NASA’s contributions to flight. Centered on an original Multimedia Planetarium Show on flight, Flight Adventures, the Museum designed several components, all of which complement the show and the messages it conveys. Among these components are an exhibit area composed of a movable wind tunnel, a display of models, low- and high-tech interactives; a Unit of Study; a TV show, Wings Over Indiana; a website; and a variety of educational and family programs.
DATE:
-
TEAM MEMBERS:
Jennifer Pace-RobinsonGordon Schimmel
Climate Change: NASA’s Eyes on the Arctic is a multi-disciplinary outreach program built around a partnership targeted at k-12 students, teachers and communities. Utilizing the strengths of three main educational outreach institutions in Alaska, the Challenger Learning Center of Alaska partnered with the University of Alaska Museum of the North, the Anchorage Museum and UAF researchers to build a strategic and long lasting partnership between STEM formal and informal education providers to promote STEM literacy and awareness of NASA’s mission. Specific Goals of the project include: 1) Engaging and inspiring the public through presentation of relevant, compelling stories of research and adventure in the Arctic; 2) strengthening the pipeline of k-12 students into STEM careers, particularly those from underserved groups; 3) increasing interest in science among children and their parents; 4) increasing awareness of NASA’s role in climate change research; and 5) strengthening connections between UAF researchers, rural Alaska, and Alaska’s informal science education institutions. Each institution chose communities with whom they had prior relationships and/or made logistical sense. Through discussions analyzing partner strengths, tasks were divided; the Challenger Center taking on the role of k-12 curriculum development, the Museum of the North creating animations with data pulled from UAF research, to be shown on both in-house and traveling spherical display systems and the Anchorage Museum creating table top displays for use in community science nights. Each developed element was used while visiting the identified communities both in the classroom environment and during the community science nights.
The Maryland Science Center (MSC) Astrobiology project includes an interactive exhibit and Davis Planetarium program for school and public museum visitors, exploring the search for life in our Solar System, the search for exoplanets and an understanding of extreme forms of Earthly life. Four day-long Educator Workshops have taken place during the project with a total of 179 teachers participating.
Baltimore’s MSC is the lead institution, with the project led by PI Van Reiner, MSC President and CEO and Co-PI Jim O’Leary, MSC Senior Scientist, and science advisors consisting of astronomers, biologists, a geologist and educators representing NASA Goddard Space Flight Center, Space Telescope Science Institute, Carnegie Institute of Washington, Johns Hopkins University and the University of Maryland and Maryland School for the Blind.
The project provides visitors with a sense of the Milky Way Galaxy’s size and composition, the galaxy’s number of stars and potential planets, and the number of other galaxies in the Universe. The exhibit explores Earthly extremophiles, what their survival signifies for life elsewhere in the Solar System, and examines possibilities for life on Mars and moons of the Solar System, explores techniques used to detect exoplanets and NASA’s missions searching for exoplanets and Earth-like worlds. The project looks to provide a sense of the vast number of potential planets that exist, the hardiness of Earthly life, the possibilities for life on nearby planets and moons, and the techniques used to search for exoplanets.
The exhibit and Planetarium program premiered November 2, 2012, and both remain as long-term Science Center offerings. Since opening, MSC has hosted nearly a million visitors, and with the Life Beyond Earth exhibit located in a highly trafficked area near the Davis Planetarium and Science On a Sphere, the great majority of visitors have experienced the exhibit. The We Are Aliens program in the Davis Planetarium has been seen by more than 26,000 visitors since opening.
Over the last decade, hundreds of planetariums worldwide have adopted digital “fulldome” projection as their primary projection and presentation medium. This trend has far-reaching potential for science centers. Digital planetarium capabilities extend educational and cultural programming far beyond night-sky astronomy. These “digital domes” are, in essence, immersive visualization environments capable of supporting art and live performances and reproducing archeological sites, as well as journeying audiences through the local cluster of galaxies. Their real-time and rapid-update capabilities
The MyDome project will bring 3D virtual worlds for group interaction into planetaria and portable domes. Advances in computing have evolved the planetarium dome experience from a star field and pointer presentation to a high-resolution movie covering the entire hemispherical screen. The project will further transform the dome theater experience into an interactive immersive adventure. MyDome will develop scenarios in which the audience can explore along three lines of inquiry: (1) the past with archeological reconstructions, (2) the present in a living forest, and (3) the future in a space station or colony on Mars. These scenarios will push the limits of technology in rendering believable environments of differing complexity and will also provide research data on human-centered computing as it applies to inquiry and group interactions while exploring virtual environments. The project proposes to engage a large portion of the population, with a special emphasis on the underserved and under-engaged but very tech-savvy teenage learner. Research questions addressed are: 1. What are the most engaging and educational environments to explore in full-dome? 2. What on-screen tools and presentation techniques will facilitate interactions? 3. What are the limitations for this experience using a single computer, single projector mirror projection system as found in the portable Discovery Dome? 4. Which audiences are best served by exploration of virtual hemispherical environments? 5. How large can the audience be and still be effective for the individual learner? What techniques can be used to provide more people with a level of control of the experience and does the group interaction enhance or diminish the engagement of different individuals? 6. What kind of engagement can be developed in producing scientific and climate awareness? Does experiencing past civilizations lead to more interest in other cultures? Does supported learning in the virtual forest lead to greater connection to and understanding of the real forest? Does the virtual model space experience excite students and citizens about space exploration or increase the understanding of the Earth's biosphere? The broader impacts of the project are (1) benefits to society from increasing public awareness and understanding of human relationships with the environment in past civilizations, today?s forests and climate change, and potential future civilizations in space and on Mars; (2) increasing the appeal of informal science museums to the tech-savvy teenage audience, and (3) significant gains in awareness of young people in school courses and careers in science and engineering. The partners represent a geographically diverse audience and underserved populations that include rural (University of New Hampshire), minority students (Houston Museum of Natural Science) and economically-distressed neighborhoods (Carnegie Museum of Natural History). Robust evaluation will inform each program as it is produced and refined, and will provide the needed data on the potential for learning in the interactive dome environment and on the optimal audience size for each different type of inquiry.
DATE:
-
TEAM MEMBERS:
Annette SchlossKerry HandronCarolyn Sumners
resourceresearchMuseum and Science Center Exhibits
Presentation on NSF grant DRL-1010844 (""STAR Library Education Network: A Hands-on Learning Program for Libraries and Their Communities"") presented at the CAISE Convening on Organizational Networks, November 17th, 2011.
The participation in a single planetarium program that incorporated kinesthetic learning techniques improved students’ understanding of celestial motion. Even though this study is focused on astronomy and planetariums, it is of relevance to educators who interface with learners at single events or are working with schools to integrate or complement their informal education offerings with the formal curriculum.
Visitor Baseline Study of Science on a Sphere at the Denver Museum of Nature & Science. This resource includes the Research Assistant Protocol, Observation Protocol, and Visitor Questionnaire.