Millions of Latinx youth, aged 14 to 18, work formal or informal jobs to provide income for themselves or their families. In the context of these workplaces, Latinx youth demonstrate numerous skills that are essential to industrial engineering, such as minimizing workplace injuries or optimizing processes to maximize efficiency. However, their workplace ingenuity and skills are often underrecognized by educational systems. To counter this lack of recognition, the purpose of this project is to iteratively develop and research an out-of-school engineering program for working Latinx youth. This program is designed to recognize and build from youths’ workplace experiences by connecting them with industrial engineering concepts and practices, such as those used to promote worker safety. This program is also designed for youth to articulate transformational visions of industrial engineering, which expand current goals, values, and methods commonly embraced within this discipline. This year-long program will be facilitated by educators of existing out-of-school programs (e.g., Mathematics, Engineering, and Science Achievement), in partnership with undergraduate mentors from the Society for Professional Hispanic Engineers and other local organizations that serve Latinx youth (e.g., Latinos in Action). Approximately 220 youth are expected to participate in the programming. Researchers will explore whether and how youth participants develop identities in engineering, as well as how the educators and mentors understand and enact assets-based, out-of-school engineering education grounded in youths’ experiences. Researchers will also identify the individual, institutional, and systemic factors that support or inhibit sustained implementation of the program over time in different sites and contexts. This project will result in a set of empirically tested, bilingual program materials that will be disseminated widely to professional organizations dedicated to out-of-school programming and to serving Latinx youth.
This project will result in a localizable, transferable, and sustainable model for an out-of-school time program that recognizes and amplifies Latinx youths’ workplace funds of knowledge and leverages them toward youth-driven visions and applications of engineering. This program, which will connect with other people and sites in youths’ learning ecosystems, is grounded in principles of translanguaging, transformational mentorship, and educational dignity and recognition. In partnership with youth participants, researchers will use a social design experiment to explore the following research questions: What are the engineering identity trajectories of working high school youth, and how do specific moments of identity negotiation and recognition relate to broader patterns across program sessions and identity trajectories for individual participants over time? To answer these questions, a pre-, mid- and post-program Engineering Identity Scale; recordings of program implementations; interviews; and youth artifacts will be analyzed using various methods such as critical multimodal discourse analysis. After implementations of the program across multiple sites, researchers will use design-based implementation research to answer the following questions: How do educators and mentors understand and enact assets-based pedagogies designed to foster recognition across sites? What institutional and systemic features (designed or naturalistic) support or inhibit productive adaptations and implementations of the program? These questions will be answered using constant comparative analyses of data sources such as interviews with the program educators and mentors, observations of program implementations, observations of professional development sessions, and public documents. Culturally responsive, educative evaluation will be used to iteratively improve the program. The resulting research and program materials will be disseminated widely through professional organizations dedicated to Latinx youth, engineering education, and out-of-school learning.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
DATE:
-
TEAM MEMBERS:
Amy Wilson-LopezAlfonso Torres-RuaMarisela Martinez-ColaColby Tofel-GrehlAlfonso Torres-Rua
Science communication is proliferating in the developing world, however, with respect to science centres, as a whole Africa is being left behind. Here 15 participants in a capacity building program are investigated using traditional needs-based and contemporary asset-based development conceptualisations. These development theories parallel deficit and participatory approaches, respectively, within science communication and demonstrate synergies between the fields. Data showed staffing, funding, governments, host institutions, and audiences are prominent needs and assets, networks are a major
DATE:
TEAM MEMBERS:
Graham WalkerLeapotswe BantsiSiphesihle BukhosiniKnowledge ChikundiAkash DusrathMartin KafeeroBhamini Kamudu ApplasawmyKenneth Monjero IgadwaKabelo MoswetsiSandile RikhotsoMarthinus J. SchwartzPuleng Tsie
resourceresearchProfessional Development, Conferences, and Networks
As science communication programs grow worldwide, effective evaluation and assessment metrics lag. While there is no consensus on evaluation protocols specifically for science communication training, there is agreement on elements of effective training: listening, empathy, and knowing your audience — core tenets of improvisation. We designed an evaluation protocol, tested over three years, based on validated and newly developed scales for an improvisation-based communication training at the Alan Alda Center for Communicating Science. Initial results suggest that ‘knowing your audience’ should
DATE:
TEAM MEMBERS:
Christine O’ConnellMerryn McKinnonJordan Labouff
resourceprojectProfessional Development, Conferences, and Networks
This three-year project focuses on professional research experiences for middle and high school STEM teachers through investigations of the Great American Biotic Interchange (GABI). Each year 10 teachers (in diverse fields including biology, chemistry, earth and environmental sciences, and oceanography) and three to five professional paleontologists will participate in a four-phase process of professional development, including: a (1) pre-trip orientation (May); (2) 12 days in Panama in July collecting fossils from previously reported, as well as newly discovered, sites; (3) a post-trip on-line (cyber-enabled) Community of Practice; and (4) a final wrap-up at the end of each cohort (December). In addition, some of the teachers may also elect to partner with scientists in their research laboratories, principally located in California, Florida, and New Mexico. The partners in Panama are from the Universidad Autónoma de Chiriquí (UNACHI), including faculty and students, as well as STEM teachers from schools in Panama. Teachers that participate in this RET will develop lesson plans related to fossils, paleontology, evolution, geology, past climate change, and related content aligned with current STEM standards.
The GABI, catalyzed by the formation of the Isthmus of Panama during the Neogene, had a profound effect on the evolution and geography of terrestrial organisms throughout the Americas and marine organisms globally. For example, more than 100 genera of terrestrial mammals dispersed between the Americas, and numerous marine organisms had their interoceanic distributions cut in half by the formation of the Isthmus. Rather than being considered a single event that occurred about 4 million years ago, the GABI likely represents a series of dispersals over the past 10 million years, some of which occurred before full closure of the Isthmus. New fossil discoveries in Panama resulting from the GABI RET (Research Experiences for Teachers) are thus contributing to the understanding of the complexity and timing of the GABI during the Neogene.
This award is being co-funded with the Office International and Integrative Activities.
This document describes the summative project evaluation of 5 annual cohorts of STE(A)M teachers, mostly from California, Florida, and New Mexico participating in out-of-school authentic research experiences collecting fossils and learning about geology, biology, and the natural history along the Panama Canal, and their experiences with museums and research collections. The STEM content of this project is based on the Great American Biotic Interchange (GABI) of animals and plants across the Isthmus of Panama over the past 5 million years. This report also describes the efficacy of sustained
Wireless radio communications, such as Wi-Fi, transmit public and private data from one device to another, including cell phones, computers, medical equipment, satellites, space rockets, and air traffic control. Despite their critical role and prevalence, many people are unfamiliar with radio waves, how they are generated and interact with their surroundings, and why they are the basis of modern communication and navigation. This topic is not only increasingly relevant to the technological lives of today’s youth and public, it is critical to the National Science Foundation’s Industries of the Future activities, particularly in advancing wireless education and workforce development. In this project, STEM professionals from academia, industry and informal education will join forces to design, evaluate, and launch digital apps, a craft-based toolkit, activity guides, and mobile online professional learning, all of which will be easily accessed and flexibly adapted by informal educators to engage youth and the public about radio frequency communications. Experiences will include embodied activities, such as physically linking arms to create and explore longitudinal and transverse waves; mobile experiences, such as augmented reality explorations of Wi-Fi signals or collaborative signal jamming simulations; and technological exploration, such as sending and receiving encrypted messages.
BSCS Science Learning, Georgia Tech, and the Children’s Creativity Museum (CCM) with National Informal STEM Education Network (NISE Net) museum partners will create pedagogical activity designs, digital apps, and a mobile online professional learning platform. The project features a rigorous and multipronged research and development approach that builds on prior learning sciences studies to advance a learning design framework for nimble, mobile informal education, while incorporating the best aspects of hands-on learning. This project is testing two related hypotheses: 1) a mobile strategy can be effective for supporting just-in-time informal education of a highly technical, scientific topic, and 2) a mobile suite of resources, including professional learning, can be used to teach informal educators, youth, and the general public about radio frequency communications. Data sources include pre- and post- surveys, interviews, and focus groups with a wide array of educators and learners.
A front-end study will identify gaps in public understanding and perceptions specific to radio frequency communications, and serve as a baseline for components of the summative research. Iterative formative evaluation will incorporate participatory co-design processes with youth and informal educators. These processes will support materials that are age-appropriate and culturally responsive to not only youth, with an emphasis on Latinx youth, but also informal educators and the broader public. Summative evaluation will examine the impact of the mobile suite of resources on informal educators’ learning, facilitation confidence and intentions to continue to incorporate the project resources into their practice. The preparation of educators in supporting public understanding of highly technological STEM topics can be an effective way for supporting just-in-time public engagement and interests in related careers. Data from youth and museum visitors will examine changes to interest, science self-efficacy, content knowledge, and STEM-related career interest. If successful, this design approach may influence how mobile resources are designed and organized effectively to impact future informal education on similarly important technology-rich topics. All materials will be released under Creative Commons licenses allowing for widespread sharing and remixing; research and design findings will be published in academic, industry, and practitioner journals.
This project is co-funded by two NSF programs: The Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Summative evaluation study for the Space Earth and Informal Science Education (SEISE) project examining professional impacts including project reach, partnerships, professional knowledge, and professionals' use of the project’s public-facing products and their implementation of practices for engaging the public
Over the course of the five-year NASA grant, the Space and Earth Informal STEM Education (SEISE) project offered a range of free professional development opportunities and resources to support informal educators’ ability to offer Earth and space programming and to partner with others
Framing: Broadening participation and achieving equitable outcomes has been a core goal of the science museum field for over two decades. However, how to make progress has proven an intractable problem.
Methods: Focusing on five organizations who officially committed to diversity, equity, access, and inclusion (DEAI) by participating in a national professional development program, the researchers investigate how science museums attempt to enact internally-focused change via a mixed methods case study.
Findings: While these organizations considered a variety of structurally focused change
This workshop is funded through the "Dear Colleague Letter: Principles for the Design of Digital Science, Technology, Engineering, and Mathematics (STEM) Learning Environments (NSF 18-017)." In today's educational climate, organizations are creating physical learning spaces for hands-on STEM activities, often called makerspaces, co-working spaces, innovation labs, or fablabs. These spaces have evolved to be interdisciplinary centers that personalize learning for individual, diverse learners in collaborative settings. When designed well, these physical spaces create communities that contextualize learning around participants' goals and thus address STEM learning in a dynamic and integrated way. Participation in these learning environments encourages the cultivation of STEM identities for young people and can positively direct their career trajectories into STEM fields. This workshop will bring together a community of collaborators from multiple stakeholder groups including academia, public libraries, museums, community based organizations, non-profits, media makers and distribution channels, and educators within and beyond K-12 schools. Led by the University of Arizona, and held at Biosphere 2, an international research facility, participants will engage in activities that invite experimentation with distributed learning technologies to examine ways to adapt learning to the changing technological landscape and create robust, dynamic online learning environments. The workshop will culminate in a synthesis of design principles, assessment approaches, and tools that will be shared widely. Partnerships arising from the workshop will pave the way for sustained efforts in this area that span research and practice communities. Outcomes will address research and development of the next generation of digitally distributed learning environments.
The three day workshop convening will provide a unique forum to (1) exchange innovative ideas and share challenges and opportunities, (2) connect practical and research-based expertise and (3) form cross-institutional and cross-community partnerships that envision, propose, and implement opportunities for collecting and analyzing data to systematically inform the collective understanding. Participation-based activities will include design-based experiences, participatory activities, demonstrations of works in progress, prototyping, creative pitching, practitioner lightning talks, small group breakouts, hands-on design activities, and an 'unconference' style synthesis of bold ideas. Participants will be invited to experiment with distributed learning technologies. Five focus areas for the workshop include (1) inclusivity of learning spaces that invite multiple perspectives and full participation, (2) documenting learning in ways that are linked to outcomes and impacts for all learners, (3) implementing the use of new technologies in diverse settings, such as the workforce, (4) interpersonal interactions and peer-to-peer learning that may encourage a STEM career-path, and, (5) methods for collecting and analyzing data at the intersection of people, the learning environment, and new technologies at multiple levels. Outcomes of the workshop will serve to advance knowledge regarding critical gaps and opportunities and identify and characterize models of collaboration, networking, and innovation that operate within and across studio-based STEM learning environments.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
With funding from the NASA Science Activation program, the Space Science Institute (SSI) launched NASA@ My Library in 2016. The vision of NASA@ My Library was to help public libraries and state library agencies increase NASA and STEM learning opportunities for library patrons throughout the U.S., including those in geographic areas and populations currently underserved in STEM education. SSI worked closely with its partners, including the American Library Association (ALA), Cornerstones of Science (CoS), the Lunar and Planetary Institute (LPI), and the Pacific Science Center’s Portal to the
With funding from the NASA Science Activation program, the Space Science Institute (SSI) launched NASA@ My Library in 2016. The vision of NASA@ My Library was to help public libraries and state library agencies increase NASA and STEM learning opportunities for library patrons throughout the U.S., including those in geographic areas and populations currently underserved in STEM education. SSI worked closely with its partners, including the American Library Association (ALA), Cornerstones of Science (CoS), the Lunar and Planetary Institute (LPI), and the Pacific Science Center’s Portal to the
With funding from the NASA Science Activation program, the Space Science Institute (SSI) launched NASA@ My Library in 2016. The vision of NASA@ My Library was to help public libraries and state library agencies increase NASA and STEM learning opportunities for library patrons throughout the U.S., including those in geographic areas and populations currently underserved in STEM education. SSI worked closely with its partners, including the American Library Association (ALA), Cornerstones of Science (CoS), the Lunar and Planetary Institute (LPI), and the Pacific Science Center’s Portal to the