In our efforts to sustain U.S. productivity and economic strength, underrepresented minorities (URM) (for the purpose of this paper defined as persons of African American, Hispanic American, and Native American racial/ethnic descent), provide an untapped reservoir of talent that could be used to fill technical jobs. Over the past 25 years, educational diversity programs have encouraged and supported URM pursuing STEM degrees. Yet, their representation in STEM still lags far behind that of White, non-Hispanic men.
To understand the reasons why this is occurring, the American Association for
DATE:
TEAM MEMBERS:
Yolanda S. GeorgeVirginia Van HorneShirley M. Malcom
The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.
The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.
The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE:
-
TEAM MEMBERS:
Maritza MacdonaldMeryle WeinsteinRosamond KinzlerMordecai-Mark Mac LowEdmond MathezDavid Silvernail
This NSF INCLUDES Design and Development Launch Pilot will improve math achievement among elementary school students of color in public schools in Albuquerque, New Mexico. Recognizing the need to coordinate efforts related to students' math and science achievement, key stakeholders formed the NM STEM Ecosystem, a dynamic network of cross-sector partners committed to making real impact on STEM education and degree attainment in Albuquerque. The NM STEM Ecosystem identified the math achievement gap between low-income students of color and their more economically-advantaged peers as the Broadening Participation (BP) Challenge it would address first. While math achievement gaps between students of color and Caucasian students appear nationally, the situation is particularly dire in New Mexico. In order to keep doors open to future STEM careers, it is crucial that learning pathways for math are articulated early and that these pathways honor families' cultural ways of knowing. The innovative strategy of Math Families & Communities Empowering Student Success (Math FACESS) is to use a collective impact approach to close the math achievement gap by connecting formal and informal STEM educators around a coherent, multi-faceted program of early mathematics teaching and learning that empowers parents and teachers to support children's mathematical development. Implementation of Math FACESS includes four major components: 1) Teachers at two pilot schools will participate in professional development related to Math Talk and Listening; 2) Parents at the pilot schools will participate in parent workshops and community-based activities focused on supporting their children's math achievement; 3) Project partners will implement community-based family activities organized around a theme of Twelve Months of Math; and 4) Ecosystem partners will study what worked and what didn't, in order to identify best practices that can be shared with system leaders to scale effective practices and increase impact.
The near-term objectives for Math FACESS are: 1) improve students' attitudes, practices, and achievement in math; 2) improve parents' attitudes, practices, and confidence in math and increase their utilization of family math resources; 3) improve data-sharing among partners related to math participation and achievement; and 4) create pathways within the Ecosystem for family math learning. The effectiveness of the collective impact model and impacts on partner organizations also will be assessed. Through the math FACESS Launch Pilot, the NM STEM Ecosystem plans to: 1) demonstrate the power of a collective impact social innovation framework to address a systemic community condition -- in this case, the math achievement gap; 2) contribute to theory-of-change research that demonstrates student achievement can be affected by working with parents and teachers; and 3) provide a model that values different ways of knowing and uses cultural context in the design of STEM learning opportunities for students, families, and schools.
DATE:
-
TEAM MEMBERS:
Joe HastingsArmelle CasauObenshain KorenKersti TysonAngelo Gonzales
This NSF INCLUDES Design and Development Launch Pilot is to expand the Navajo Nation Math Circle model to other sites, and to develop and launch a network of math circles based on the NNMC model. The Navajo Nation Math Circle model is a novel approach to broadening the participation of indigenous peoples in mathematics that, ultimately, seeks to improve American Indian students' attitudes towards mathematics, persistence with challenging problems, and grades in math courses. Navajo Nation Math Circles bring teachers, students, and mathematicians together to work collaboratively on challenging, but meaningful and fun, math problems. Through this NSF INCLUDES project, additional math circles across the Navajo Nation will be launched and a mirror site in Washington State serving additional tribes (such as Puyallup, Muckleshoot, Tulalip, and Stillaguamish) will be established.
Originating approximately a century ago in Eastern Europe as a means to engage students in mathematical thinking, math circles bring teachers, students, and math professionals together to work collaboratively on challenging, but relevant and interesting, math problems. Navajo Nation Math Circles, established math circles in various Navajo Nation communities, are the foundation of this INCLUDES project. One goal of this effort is to launch a network with the capacity to support the replication and adaption of math circles in multiple sites as an innovative strategy for encouraging indigenous math engagement through culturally enriched open-ended group math explorations. In addition, the Navajo Nation Math Circle model will be expanded to new math circles in the Navajo Nation, as well as in Washington State to serve additional tribes. Cells in the network will implement key elements of the Navajo Nation Math Circle model, adapting them to their particular contexts. Such elements include facilitation of open-ended group math explorations, incorporating indigenous knowledge systems; a Mathematical Visitor Program sending mathematicians to schools to work with students and their teachers; inclusion of mathematics in public festivals to increase community mathematical awareness; a two-week summer math camp for students; and teacher development opportunities ranging from workshops to immersion experiences to a mentoring program pairing teachers with mathematicians.
DATE:
-
TEAM MEMBERS:
David AucklyHenry FowlerJayadev Athreya
The University of Guam (UOG) NSF INCLUDES Launch Pilot project, GROWING STEM, addresses the grand challenge of increasing Native Pacific Islander representation in the nation's STEM enterprise, particularly in environmental sciences. The project addresses culturally-relevant and place-based research as the framework to attract, engage, and retain Native Pacific Islander students in STEM disciplines. The full science, technology, engineering and mathematics (STEM) pathway will be addressed from K-12 to graduate studies with partnerships that include the Guam Department of Education, Humatak Community Foundation, Pacific Post-Secondary Education Council, the Guam Science and Discovery Society, the Society for the Advancement of Chicanos/Hispanics and Native Americans in Science (SACNAS) and the University of Alaska-Fairbaanks. As the project progresses, the project anticipates further partnerships with the current NSF INCLUDES Launch Pilot project at the University of the Virgin Islands.
Pilot activities include summer internships for high school students, undergraduate and graduate research opportunities through UOG's Plant Nursery and the Humatak Community Foundation Heritage House. STEM professional development activities will be offered through conference participation and student research presentations in venues such as the Guam Science and Discovery Society's Guam Island-wide Science Fair and SACNAS. Faculty will be recruited to develop a mentoring protocol for the project participants. Community outreach and extension services will expand public understanding in environmental sciences from the GROW STEM project. Project metrics will include monitoring the diversity of partners, increases in community engagement, Native Pacific Islander participation in STEM activities, the number of students who desire to attain terminal STEM degrees and the number of community members reached by pilot STEM extension and outreach activities. Dissemination of the GROWING STEM pilot project results will occur through the NSF INCLUDES National Network, partner annual conferences, and local, regional and national STEM conferences.
DATE:
-
TEAM MEMBERS:
John PetersonCheryl SanguezaElse DemeulenaereAustin Shelton
resourceprojectProfessional Development and Workshops
This is an "Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science" (INCLUDES) Design and Development Launch Pilot that will implement a plan to assess the feasibility of a strategy designed to ensure high levels of improvement in K-12 grade students' mathematics achievement. The plan will focus on an often-neglected group of students--those who have been performing at the lowest quartile on state tests of mathematics, including African American, Hispanic, Native American, students with disabilities, and those segregated in urban and rural communities across the country. The project will draw on lessons learned from the nation's Civil Rights Movement and a community-organizing strategy learned during the struggle to achieve voting rights for African Americans. The Algebra Project (AP) is a national, nonprofit organization that uses mathematics as an organizing tool to ensure quality public school education for every child in America; it believes that every child has a right to a quality education to succeed in this technology-based society. AP's unique approach to school reform intentionally develops sustainable, student-centered models by building coalitions of stakeholders within the local communities, particularly the historically underserved populations. The AP works to change the deeply rooted social attitudes that encourage the disenfranchisement of a third of the nation's population. It delivers a multi-pronged approach to build demand for and support of quality public schools, including research and development, school development, and community development education reform efforts through K-12 initiatives.
The Algebra Project and the Young People's Project (YPP) will join efforts to bring together over 70 individuals and organizations, including 17 universities of which 8 are Historical Black Colleges and Universities, school districts, mathematics educators, and researchers to examine their experiences, and use collective learning to refine and hone strategies that they have piloted and tested to promote mathematics inclusion. The role of YPP in the proposed project will be to organize and facilitate the youth component, such that project activities reflect the language and culture of students, continuously leveraging and building upon their voice, creative input, and ongoing feedback. YPP will conduct workshops for students organized around math-based games that provide collective experiences in which student learning requires individual reflection, small group work, teamwork and discussion. The proposed work will comprise the design of effective learning opportunities; building and supporting a cadre of teachers who can effectively work with students learning under the proposed approach; using technologies to enhance teaching and learning; and utilizing evaluation and research to drive continuous improvement. Because bringing together an effective network with diverse expertise to collaborate towards national impact requires expert facilitation processes, the project will establish working groups around three major principles: (1) Organizing from the bottom up through students, their teachers, and others in local communities committed to their education, allied with individuals and organizations who have expertise and dedication for achieving the stated goals, can produce significant progress and the conditions for collective impact; (2) Effective learning materials and formal and informal learning opportunities in mathematics can be designed and implemented for students performing in the bottom academic quartile; and (3) Teachers and other educators can become more proficient and more confident in their capacity to produce students who are successful in learning the level of mathematics required for full participation in STEM. The working groups will also be tasked to consider two cross-cutting topics: (a) the communication structures and technologies needed to operate and expand the present network, and to create the "backbone" and other structures needed to operate and expand the network; and (b) the measurements and metrics for major needs, such as assessing students' mathematics literacy, socio-emotional development in specified areas; teachers' competencies; as well as the work of the network. The final product of this plan will be a "Theory of Collective Action and Strategic Plan". The plan will contain recommendations for collective actions needed in order for the current network to coordinate, add appropriate partners, develop the needed backbone structures, and become an NSF Alliance for national impact on the broadening participation challenge of improving the mathematics achievement. An external evaluator will conduct both formative and summative aspects of this process.
DATE:
-
TEAM MEMBERS:
Robert MosesNell CobbGregory BudzbanMaisha MosesWilliam Crombie
This article discusses the Youth in Science Action Club (SAC), which uses citizen science to investigate nature, document their discoveries, share data with the scientific community, and design strategies to protect the planet. Through collaborations with regional and national partners, SAC expands access to environmental science curriculum and training resources.
DATE:
TEAM MEMBERS:
Laura HerszenhornKatie LevedahlSuzi Taylor
resourceresearchGames, Simulations, and Interactives
We describe a game and teachers’ experiences using it in their middle and high school science courses. The game, which is called “Luck of the Draw,” was designed to engage middle, high school, and college students in genetics and encourage critical thinking about issues, such as genetic engineering. We introduced the game to high school science teachers attending a summer workshop and asked them to describe their initial impressions of the game and how they might use it in their classes; later, during the academic year, we asked them whether they used the game in their classrooms and, if so
DATE:
TEAM MEMBERS:
Alicia BowerKami L. TsaiCarey S. RyanRebecca AndersonAndrew JametonMaurice Godfrey
resourceresearchProfessional Development and Workshops
Effective science teaching critically requires content-focused professional development (PD), particularly in life sciences where content evolves rapidly. How subject matter knowledge related to teaching (SCK) is most effectively incorporated into PD has not been investigated. We studied how a professional learning community of high school teachers and scientists co-designing a bioscience curriculum produced the accompanying SCK-focused PD. SCK was level specific but teachers could not generate it alone. Co-designing SCK with scientists was valuable to teachers, as evidenced by significant
DATE:
TEAM MEMBERS:
Stephanie TammenRussell FauxKarina MeiriJacque Berri
The Ocean Science project integrates the Ocean Literacy Essential Principles and Fundamental Concepts into a Western Washington region-wide, coordinated program of formal and informal education consisting of: 1. Teacher professional development in the ocean sciences to integrate the Ocean Literacy Essential Principles and Fundamental Concepts into inquiry-based marine science education and instruction; 2. Evaluation and re-alignment of existing Sound Science ecosystems curricula into Ocean Science, incorporating NOAA data and promoting the Ocean Literacy Essential Principles and Fundamental Concepts; 3. Classroom programs, beach field investigations, and on-site programs at the Seattle Aquarium of the Olympic Coast national Marine Sanctuary's Olympic Coast Discovery Center for grades 4-5 students, their parents and teachers; 4. Parent training in ocean science content, the Ocean Literacy Essential Principles and Fundamental Concepts, and inquiry-based methods for supporting their children's science education; 5. Informal education for the general public via an interactive learning station linked to the Window on Washington Waters exhibit and designed to innovatively use NOAA data and information (videos, computer simulations and other creative media) to increase and evaluate ocean literacy in adults and children. Window on Washington Waters displays the outer coast marine environments and sea life of the Olympic Coast National Marine Sanctuary.
Recharge the Rain moves sixth through twelfth grade teachers, students and the public through a continuum from awareness, to knowledge gain, to conceptual understanding, to action; building community resiliency to hazards associated with increased temperatures, drought and flooding in Arizona. Watershed Management Group with Arizona Project WET will utilize NOAA assets and experts from the National Weather Service and Climate Assessment for the Southwest (CLIMAS) to inform citizens and galvanize their commitment to building a community, resilient to the effects of a warming climate. Project activities will be informed by Pima County’s hazard mitigation plan and planning tools related to preparing for and responding to flooding and extreme heat. Starting January 2017, this four-year project will 1) develop curriculum with Tucson-area teachers that incorporates systems-thinking and increases understanding of earth systems, weather and climate, and the engineering design of rainwater harvesting systems 2) immerse students in a curricular unit that results in the implementation of 8 teacher/student-led schoolyard water harvesting projects, 3) train community docents in water harvesting practices and citizen-science data collection, 4) involve Tucson community members in water harvesting principles through project implementation workshops, special events, and tours, and 5) expand program to incorporate curriculum use in Phoenix-area teachers’ classrooms and 6) finalize a replicable model for other communities facing similar threats. Environmental and community resiliency depends upon an informed society to make the best social, economic, and environmental decisions. This idea is not only at the core of NOAA’s mission, but is echoed in the programs provided by Watershed Management Group and Arizona Project WET.
The National Ocean Sciences Bowl (NOSB) is a nationally recognized high school academic competition that provides a forum for talented students to excel in science, mathematics and technology and introduces team members, their teacher/coaches, schools and communities to ocean sciences as an interdisciplinary field of study and a possible future career path. Established by the Consortium for Oceanographic Research and Education in 1998 (the Year of the Ocean), the program operates within a supportive learning community framework that involves the ocean research community in pre-college education and stimulates broad interest in and excitement about science and the oceans. The basic model for NOSB is that of a two-tiered timed competition in which pairs of four-student teams answer multiple-choice, short-answer and critical thinking questions within multiple categories related to the oceans. Each fall, over 400 participating high schools prepare their teams for 25 regional ocean sciences bowl competitions held across the United States in February and early March. Winners of these Regional Bowls advance to the national finals in late April. The current structure layers a rich array of year-round academic elements onto the basic competition framework and offers a range of program enhancements including summer internships and scholarships for NOSB alumni and opportunities for teacher professional development. Four regional bowls currently receive additional funding to expand recruitment efforts and provide mentoring and field trip experiences for students from racial, ethnic and economic groups underrepresented in the ocean sciences. CORE proposes to continue to administer and manage the National Ocean Sciences Bowl for the next five years (April 2007-March 2012). Funds are requested to add two new sites and expand the diversity initiative. To improve the credentials of the nation's teachers and informal educators, the proposal seeks funding for coach and regional coordinator professional development including a focus on the fundamental principles and concepts of ocean literacy recently developed by the ocean education community. An additional new element is a longitudinal study of educational and career paths that will assess the role that the program plays in encouraging talented students to enter the pipeline into ocean science careers and STEM (Science, Technology, Engineering and Mathematics) professions. By supporting and promoting the program's unique educational and experiential opportunities, all NOSB partners and sponsors contribute to helping our nation better prepare K-12 students in science and technology and identify and cultivate future scientists and technical experts.