The Greensboro Children's Museum, in partnership with the University of North Carolina at Greensboro and Guilford County Schools, will develop and implement the "Grow It, Cook It, Eat It" project to study the impact of food systems literacy education on the knowledge and behavior of K-2 children in an underserved school. The project will bring food education to a local elementary school where museum educators will work alongside classroom teachers to create and deliver weekly lessons to 60 students based on sustainable gardening practices, kitchen efficacy, attitudes toward fresh, seasonal food, and behavior toward garden work and trying new foods. Participating elementary students will build the beginnings of a skills set that will empower them, and their families,to make smart food choices for a lifetime.
The L.C. Bates Museum will provide 1,700 rural fourth grade students and their families museum-based STEAM (Science, Technology, Engineering, Art, and Mathematics) educational programming including integrated naturalist, astronomy, and art activities that explore Maine's environment and its solar and lunar interactions. The project will include a series of eight classroom programs, family field trips, TV programs, family and classroom self-guided educational materials, and exhibitions of project activities including student work. By bringing programs to schools and offering family activities and field trips, the museum will be able to engage an underserved, mostly low-income population that would otherwise not be able to visit the museum. The museum's programming will address teachers' needs for museum objects and interactive explorations that enhance student learning and new Common Core science curriculum objectives, while offering students engaging learning experiences and the opportunity to develop 21st century leadership skills.
Armory Center for the Arts will develop, deliver, and evaluate "Artful Connections with Science," an innovative new visual arts-science integrated curriculum for the fourth and fifth grade levels in the Pasadena and Los Angeles Unified School Districts. "Artful Connections with Science" will provide support to the education community at a critical juncture as California adopts the Next Generation Science Standards. It will also enable the center to build organizational capacity for the delivery of arts-integration curriculum in multiple districts, thus increasing sustainability and helping to improve lives through the power of art.
Perot Museum of Nature and Science will expand its museum-based professional development offerings for Dallas-area teachers by launching, testing, and evaluating a scalable Perot Museum STEM (Science, Technology, Engineering, and Math) Teacher Institute and Mentor Program. Participating K-12 teachers will attend a weeklong, intensive "Summer Academies at the Museum" designed to measurably improve the quality of formal science instruction in public, charter, private, and parochial schools by creating and sustaining a collaborative formal and informal STEM learning community. The museum aims to increase teachers' knowledge of science content as well as their competence, confidence, creativity, and consistency in science instruction through this program, and ultimately increase interest and engagement among their students in STEM subjects.
The Long Island Children's Museum, in partnership with the Westbury School District, will expand its Westbury STEM Partnership program to provide additional professional development and ongoing support for teachers, and experiential STEM (science, technology, engineering, and math) learning opportunities for both first- and second-grade students in their classrooms and at the museum. The program will support inquiry-based, hands-on STEM learning in a high-need school district neighboring the museum, provide professional development to teachers, bring students to the museum to experience exhibits and programs, and make the museum's education staff available to educators for mentoring and content support as they integrate new teaching strategies into their classrooms. The project will promote improved STEM teaching and student learning by supporting teachers in integrating inquiry-based teaching strategies, enriching experiential learning for students both in and out of the classroom, and strengthening local school and community partnerships.
Pacific Science Center will expand its Science, Technology, Engineering and Math—Out-of-School Time (STEM-OST) model to new venues in the Puget Sound region to improve science literacy and increase interest in STEM careers for youth. STEM-OST brings hands-on lessons and activities in physics, engineering, astronomy, mathematics, geology, and health to elementary and middle school children in underserved communities throughout the summer months. The center will modify lessons and activities to serve students in grades K-2, align the curriculum with the Next Generation Science Standards, and increase the number of Family Science Days and Family Science Workshops offered to enhance parent involvement in STEM learning. The program will employ a tiered mentoring approach with outreach educators, teens, and education volunteers to increase interest in STEM content and provide direct links between STEM and workforce preparedness.
These resources are designed to identify opportunities to improve training for educators and researchers during implementation of the Living Laboratory model. The Data Collection Guidelines provide general instructions and tips for conducting evaluation through observations of (and/or interviews with) visitors. Two versions of each instrument (Researcher-Caregiver Conversations Instrument and Research Toy Interactions Instrument) are included: one can be modified and printed for data collection; the second is an annotated version, which includes more detailed instructions for each item in the
The Lawrence Hall of Science will implement the "Mobile Inventor's Lab," a project to extend the benefits of an ongoing outreach program into a model that can serve visitors at a variety of locations in communities underserved by local science education organizations. The museum will refine its engineering design experiences to be easily reconfigured and delivered in a variety of locations, and develop activities and kits for library and community partner staff. This project will expand the impact of the hall's educational resources and offer audiences the opportunity to interact with and learn about engineering design experiences in their own communities.
The Museum of Science and Industry (MOSI), in collaboration with the Tampa Community Development Corporation (CDC), will create a youth STEAM (science, technology, engineering, arts, and mathematics) program designed by East Tampa neighborhood participants for the neighborhood. The STEAM program will be a first of its kind in the area and will bring a continuum of experiences in STEAM fields to underserved middle and high school students, as well as volunteer participants, who come from the East Tampa neighborhood. Initial programming topics for career exploration include astronomy/cosmology and space exploration, environmental sciences, engineering, robotics, crime scene forensics, and medical explorations. The project will expand the museum's ability to create a STEAM continuum, increase interest in STEAM careers, and to increase awareness of skills necessary to be successful in STEAM careers.
This document presents an overview of the quantitative survey data findings from the SL+ Equity Pathways in Informal Science Learning project. Further qualitative analysis on some of the open response data is yet to be completed. Findings are grouped into four areas: about the individuals taking part in the survey; their definitions and understanding of equity and related terms; their current equity practice; and their practices around equity work including reading, talking with colleagues and evaluation.
This Research & Practice Agenda is a synthesis of findings from the Youth Access & Equity in Informal Science Learning (ISL) partnership, a UK-US researcher-practitioner project, funded by the Science Learning+ Initiative. Activities included a survey administered in the UK and US with 134 ISL researchers and/or practitioners; workshops with 111 participants in both the UK and US; a literature review; and a joint UK/US workshop conducted in the UK. This set of activities generated a range of data, resources and raised questions, both research questions and questions of practice, which we have
This infographic reports findings from the Youth Access & Equity in Informal Science Learning (ISL) project, a UK-US researcher-practitioner partnership funded by the Science Learning+ Phase 1 scheme. Our project focuses on young people aged 11-14 primarily from under-served and non-dominant communities and includes researchers and practitioners from a range of ISL settings: designed spaces (e.g. museums, zoos), community-based (e.g. afterschool clubs) and everyday science spaces (e.g. science media).