This project will introduce students ages 8-14, including underserved students; their teachers and families; and the general public to three biomedical research areas inspired by NIH's Roadmap for Medical Research: biological pathways, bioinformatics and nanomedicine. These areas are unfamiliar to many adults and are not introduced in science curricula. Using the metaphor of a hardware store (i.e., building materials, tools, parts, home repair projects), the project will introduce families, students and teachers to three ideas: (1) The body maintains and repairs itself at the molecular, cell, tissue, organ and system levels; (2) Biomedical researchers are uncovering new complexities at the molecular level that can increase our understanding of how the body works; and (3) Developments in nanomedicine can lead to discoveries and treatments. In a hardware store theater and workshop space and in a virtual hardware store, the project will develop and present demonstrations and basic- and intermediate-level labs (for 2nd- and 6th-grade students or families); train museum staff and interns to present the programs; offer orientation workshops to teachers from Title I schools; develop a teacher's guide; conduct outreach in middle schools; engage scientists to talk about their work and help them communicate with the public; and create a manual of materials and activities for other science centers. The evaluation plan will include formative research on activities and assessment of how well repair metaphors facilitate understanding of clinical issues. A team of scientists, museum staff, science teachers, and biology and medical students will guide the development of education components.
This cooperative effort among Purdue University, public schools in Indiana, and The Children's Museum of Indianapolis aims to develop, evaluate and disseminate educational programs for K-12 students, parents, teachers and the public about the science involved in keeping people healthy. Obesity prevention, cancer prevention and asthma will be emphasized. Fitness programs, research programs using animal models, K-12 outreach programs, professional development workshops and recruiting efforts will be networked to fill gaps in health science education, interest schoolchildren in health science research and improve public health. This project will develop and rigorously assess curricular modules for grades three, six and nine. The science behind health advances, the clinical trials process and the role of animals in developing drugs and medical devices will be addressed. In addition, the project will engage schoolchildren in becoming health science researchers by providing them with role models. Researchers will interact with K-12 students during classroom visits, camps and after-school programs. Finally, the project will involve and engage children, parents and the public in educational fitness activities and programs. Dogs will be incorporated into fitness programs as exercise companions. The program includes an interactive traveling exhibit, highlighting the science involved in keeping people healthy.
As part of a grant from the National Science Foundation, the National Federation of the Blind (NFB) is conducting regional STEM workshops, entitled NFB STEM2U, for blind youth [youth], grades 3 – 6. During this first regional workshop in Baltimore, the NFB operated three different programs simultaneously: one program for youth, a second program for their parents/caregivers, and a third program for a group of teachers who work with visually impaired students. A fourth program, for Port Discovery museum staff, was conducted earlier to prepare the museum staff to assist with the youth program
The Learning Labs in Libraries and Museums program was launched in 2011 by a public-private partnership between the Institute of Museum and Library Services (IMLS) and the John D. and Catherine T. MacArthur Foundation in response to President Obama's Educate to Innovate initiative. Through two cycles of national competitions, libraries, museums, and other community partners at 24 sites were funded to create innovative teen spaces that followed the principles of the emerging Connected Learning Framework. Learning Labs often involve partnerships and collaborations between libraries and other
Explainers have a longstanding presence in science museums and centres, and play a significant role in the institutions’ educational agenda. They interact with the public, and help make visitors’ experiences meaningful and memorable. Despite their valuable contributions, little research attention has been paid to the role and practice of these individuals. From the limited research literature that does exist, we know that museum educators employ a complexity of skills and knowledge. We also know such educators have a variety of experiences and qualifications – this creates a rich diversity
With this 3-year project, TERC and the Museum of Science (MoS) Boston are studying how family and school visitors integrate iPod Touch versions of the Signing Science Pictionary (SSP), Signing Science Dictionary (SSD), and Signing Math Dictionary (SMD) into their museum experience and the impact of dictionary use. This report focuses on school visitors. Each dictionary includes more than 700 standards-based science or mathematics terms. The SSP (funded in part by grants from the Shapiro Family Foundation and the U. S. Department of Education, Grant #H327A080040) is intended for children ages 5
With NCRR SEPA Phase I funding, the Exploratorium developed a microscope imaging station (MIS) for public use in the museum. At this facility, visitors explore living things using research-grade equipment. For visitors, microscopes and images are engagement points for learning more about basic biology, biomedical research, and human health. With SEPA Phase II funding, the Exploratorium proposes to use the infrastructure and educational approach developed in Phase I to: (1) Create a wider, more comprehensive array of biomedically relevant, image-based materials-including still and time-lapse images, movies, and teaching activities; and (2) Disseminate these to students, teachers, museum visitors, the broader public, and other science centers. The Exploratorium will collaborate with biomedical researchers to generate high-resolution images and plan public programs. Material from these collaborations will be on current biomedical topics. Planned dissemination activities include eight "Meet the Scientist and Learn about Their Research" public programs; Saturday teacher workshops; development of multimedia exhibit content for museum display; development of web content for the MIS site; creation of image-based teacher activities; inclusion of images, movies, and activities in established web-based teacher resources (as well as new resources for high-bandwidth Internet2 application). Materials will be free to other educational institutions. Using these dissemination strategies, the Exploratorium expects to attract and engage well over 1 million visitors annually.
Adolescents face many conflicting messages and influences related to high-risk behavior. Choices confronting middle school students often have the potential for adverse effects on their overall health and well being. Montshire Museum proposes to develop an educational outreach program to allow students an opportunity to learn about key health issues in a context that is based on high-quality research and offers hands-on inquiry and self-directed investigations. The proposed educational outreach program will serve students in grades 5-8 in rural Vermont and New Hampshire schools. The project team will create four health education modules, each one related to current NIH-supported research by faculty at Dartmouth Medical School (DMS). DMS researchers will collaborate with Montshire Museum's science educators in developing the modules, connecting with students and teachers, and providing support for all aspects of the project. For each module, the project team will support hands-on classroom investigations and independent research using materials, objects and exhibits developed specifically for the program. In addition, professional development institutes for middle school health and science educators will provide science content and instructional strategies needed to successfully implement health science lessons that are aligned with national and state standards for health and science education. The curriculum materials developed for school-based programming also create opportunities for broader public outreach. Montshire's educators will adapt them for special family activities and presentations within the museum setting. The educational curriculum will be designed to provide all participants with information that will assist in making personal health decisions in the subject areas; raise participants' awareness of the ways that culture and media affect their choices; and expose participants to the interesting and relevant research taking place locally, while increasing their understanding of the diversity of health science careers and research processes. A thorough process of formative and summative evaluation will enable the project team to take an iterative approach to curriculum development and to provide the best possible learning experience for participants.
The Miami Museum of Science, in collaboration with University of Miami's (UM) School of Medicine, is requesting a Phase II grant to support national replication of the Biomedical Training, Research and College Prep (BioTrac) Project. The goal of Phase I, now in its final year of funding, was to develop a replicable model aimed at increasing the numbers of underserved students entering the biomedical research pipeline. Phase I focused on priority areas under Healthy People 2000 reflecting health issues of interest to the community as well as resources available through UM's Jackson Memorial Medical Center. Comprising hands-on project-based programming, career awareness activities, college prep, research internships and college residential experiences, the project has served 98 students to date, of whom 88% are low-income and 96% reside in homes where English is the second language. Of the 43 seniors who have graduated to date, 42 are enrolled in post-secondary studies. Of these, 52% have chosen a science-related major, and of these, 73% have chosen a biomedical course of study. Under the proposed Phase II project, the useum will establish BioTrac as a national demonstration site, extending BioTrac strategies and materials to formal and informal science institutions (ISis) through site-based institutes, distance-learning opportunities and professional conferences and publications. Continued delivery of BioTrac programming at the demonstration site will also further increase the number of underrepresented students entering the biomedical research pipeline, and allow for further programming aimed at increasing public understanding of Healthy People 2010 priorities and biomedical research. The museum will target ISis with youth programs to attend a three-day replication institute, reaching a minimum of 30 ISis during the grant. Through participation in national conferences and professional development sponsored by the Association of Science-Technology Centers, representng 340 ISis, the model has the capacity to impact small, medium, and large science centers nationwide. The model will also be adaptable for use by the other 123 Upward Bound Math & Science Centers engaged in science enrichment programming for underserved youth. Finally, elements of the model will be suitable for extracurricular school-based science clubs and high school magnet programs focused on biomedicine, further extending the potential impact of the model to school districts nationwide.
BioTrac will expand opportunities in biomedicine for low-income, first-generation college-bound high school students, increasing the number interested in, and prepared to enter, the biomedical research pipeline. Specific objectives are to: (1) Raise awareness of careers in biomedicine and provide students with real-world biomedical research experiences; (2) Increase awareness of requirements and opportunities for related post-secondary study; (3) Increase public understanding of the importance and diversity of biomedical research; and (4) Disseminate project outcomes. In collaboration with the University of Miami (UM) and Miami-Dade County Public Schools (M-DCPS), the Museum will design and implement a replicable model program exposing students to research on selected priority areas outlined in the Public Health Service's Healthy People 2000 agenda. The program will focus on areas with significant local research capacity, ties to local growth industries, and relevance to Miami-Dade's diverse communities. Students will investigate each area through hands-on lab activities, on-line research, site visits to research facilities, and through interactions with research scientists at UM's nationally renowned Jackson Memorial Medical Complex. Students will work in teams to conduct community-focused research on aspects of each priority area, using technology skills acquired as part of the program to document their research through digital video, PowerPoint presentations, and development of a BioTrac website. Students will present their research at annual symposia held at the Museum. They will also serve as science explainers in the Museum's galleries, interpreting biomedical-related exhibits to the general public. During the summer before 12th grade, students will attend residential programs at University of Florida and Florida A&M University, gaining exposure to post-secondary programs leading to careers in biomedical research. Students in 11th and 12th grade will also be encouraged to participate in M-DCPS's Advanced Academic Internship Program, gaining up to three honors credits for work in institutions engaged in biomedical research. Following 12th grade, prior to beginning college, students will be placed in an eight-week summer internships at UM labs engaged in a broad spectrum of biomedical research. The Museum will disseminate students' research experiences and project findings through an BioTrac web page, ASTC and Upward Bound conferences and networks, and Museum and UM publications.
In this chapter, we describe a project that addressed the unique professional development needs of docents. The vignette that opened the chapter took place about a year into a NASA-funded school trip project at the museum, at a point when the leadership on this project had undergone a complete turnover, and new leaders were attempting to understand what was happening with the project and what was necessary to move it forward and ensure its success. Elsewhere, we describe the nature of docent change in more detail (Allen & Crowley, 2014). Here, we expand upon the processes our project followed
The Maker Movement has taken the educational field by storm due to its perceived potential as a driver of creativity, excitement, and innovation (Honey & Kanter, 2013; Martinez & Stager, 2013). Making is promoted as advancing entrepreneurship, developing science, technology, engineering, and mathematics (STEM) workforce, and supporting compelling inquiry-based learning experiences for young people. In this paper, we focus on making as an educative inquiry-based practice, and specifically tinkering as a branch of making that emphasizes creative, improvisational problem solving. STEM-rich