Mystic Seaport received an implementation grant from the National Endowment for the Humanities to fund a suite of online, onsite, offsite, and onboard public programs and exhibits that will provide new national insight into universal and important humanities themes, through an interdisciplinary exploration of historic and contemporary American whaling. The Museum and its partners will explore through this project how, when, and why dominant American perceptions of whales and whaling took their dramatic turns. The project will raise public awareness in New England and nationwide about the role the whaling industry played in the development of our nation’s multi-ethnic make-up, our domestic economy, our global impact and encounters, and our long-standing fascination with whales. And it will promote thought about the nation’s whaling heritage, and how it continues to shape our communities and culture.
This Science Learning+ project will develop a Youth Access & Equity Research & Practice Agenda, focusing on addressing equity issues for youth, ages 11-14, primarily from non-dominant backgrounds. The project will involve researchers and practitioners from three ISL settings/contexts, (1) Designed spaces, e.g., museums; (2) Community-based, e.g., afterschool clubs; and (3) Everyday science, e.g., science media. The goal of the agenda will be to advance scholarly understanding of equity issues in relation to these three contexts. Taking an ecological view of STEM learning as a sociocultural process of participation and transformation, the project will employ a Complex Adaptive System lens to document multiple pathways youth take (or not) within/across ISL settings over time, the impact these pathways have on learning and development, and their influence on ISL organizations themselves. These lenses will help us identify aspects of learning environments which shape youth access and development, and the value and impact of the equity ideas, tools and practices.
This design case explores the affordances of gigapixel image technology for science communication and learning in museum settings through the iterative development of an explorable image viewer to engage visitors in an archaeological exhibit. We reflect on the series of user studies, prototype iterations, and design decisions taken to optimize navigation, annotation and exploration in this zoomable user interface. We highlight a set of design precedents, interaction frameworks, and content structuring approaches, while detailing the development of a media rich digital annotation strategy to
The purposes of the STUDIO 3D evaluation were to collect information about the impact upon student learning as a result of participating in the STUDIO 3D Project, as well as to elicit information for program improvement. Areas of inquiry include recruiting and retention, impact on project participants, tracking student impacts, and the project as a whole.
This research follows on a previous study that investigated how digitally augmented devices and knowledge building could enhance learning in a science museum. In this study, we were interested in understanding which combination of scaffolds could be used in conjunction with the unique characteristics of informal participation to increase conceptual and cognitive outcomes. Three hundred seven students from nine middle schools participated in the study. Six scaffolds were used in various combinations. The first was the digital augmentation. The next five were adaptations of knowledge-building
DATE:
TEAM MEMBERS:
Susan YoonKaren ElinichJoyce WangJaqueline SchooneveldEmma Anderson
This project supports the development of technological fluency and understanding of STEM concepts through the implementation of design collaboratives that use eCrafting Collabs as the medium within which to work with middle and high school students, parents and the community. The researchers from the University of Pennsylvania and the Franklin Institute combine expertise in learning sciences, digital media design, computer science and informal science education to examine how youth at ages 10-16 and families in schools, clubs, museums and community groups learn together how to create e-textile artifacts that incorporate embedded computers, sensors and actuators. The project investigates the feasibility of implementing these collaboratives using eCrafting via three models of participation, individual, structured group and cross-generational community groups. They are designing a portal through which the collaborative can engage in critique and sharing of their designs as part of their efforts to build a model process by which scientific and engineered product design and analysis can be made available to multiple audiences. The project engages participants through middle and high school elective classes and through the workshops conducted by a number of different organizations including the Franklin Institute, Techgirlz, the Hacktory and schools in Philadelphia. Participants can engage in the eCrafting Collabs through individual, collective and community design challenges that are established by the project. Participants learn about e-textile design and about circuitry and programming using either ModKit or the text-based Arduino. The designs are shared through the eCrafting Collab portal and participants are required to provide feedback and critique. Researchers are collecting data on learner identity in relation to STEM and computing, individual and collective participation in design and student understanding of circuitry and programming. The project is an example of a scalable intervention to engage students, families and communities in developing technological flexibility. This research and development project provides a resource that engages students in middle and high schools in technology rich collaborative environments that are alternatives to other sorts of science fairs and robotic competitions. The resources developed during the project will inform how such an informal/formal blend of student engagement might be scaled to expand the experiences of populations of underserved groups, including girls. The study is conducting an examination of the new types of learning activities that are multiplying across the country with a special focus on cross-generational learning.
This poster describes the work accomplished by August 2014 for the NSF-funded project "Science of Sharing: Investigating Cooperation, Competition, and Social Interdependence." It was presented at the 2014 AISL PI Meeting in Washington, DC.
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. Using STEM America (USA) is a two-year Pathways project designed to examine the feasibility of using informal STEM learning opportunities to improve science literacy among English Language Learner (ELL) students in Imperial County, California.
Computer-supported collaborative learning (CSCL) is an emerging branch of the learning sciences concerned with studying how people can learn together with the help of computers. As we will see in this essay, such a simple statement conceals considerable complexity. The interplay of learning with technology turns out to be quite intricate. The inclusion of collaboration, computer mediation, and distance education has problematized the very notion of learning and called into question prevailing assumptions about how to study it.
DATE:
TEAM MEMBERS:
Gerry StahlTimothy KoschmannDan Suthers
In the increasingly fierce competition for leisure time and educational spending, museums are seriously challenged by edutainment, the Internet, CD-ROMs, and 500-channel satellite TV. For example, if a child is interested in dinosaurs, 20 years ago a parent would have been likely to take her to the museum to see some fossils. Today, many parents would probably begin by taking her to the computer to search the World Wide Web, where a quick search reveals thousands of dinosaur web pages. If the family did not find a site among these thousands that satisfied the child's curiosity - or if they
Years before encountering their first formal science lessons in elementary school, children may already be practicing scientific thinking on a weekly, if not daily, basis. In one recent survey, parents reported that their kindergartners engaged, on average, in more than 300 informal science education activities per year - watching science television shows, reading science-oriented books, and visiting museums and zoos (Korpan, Bisanz, Bisanz, Boehme, & Lynch, 1997). This strikes us as a lot, but it is likely to pale in comparison to what young children may experience five years from now