The Oregon Museum of Science and Industry is implementing a Pathways project that will test and refine a model to promote an appreciation that science is everywhere and personally relevant by engaging transit riders in Portland, OR with location-relevant STEM content through unfacilitated, interactive science exhibits in everyday places. The study will employ a "design-based research" approach that both iteratively tests exhibit effectiveness and develops and refines an underlyting theoretical model that can contribute knowledge to the field. The "Science on the Move" model will be developed and tested using an exhibit prototype that includes 1) an easily transportable prototype core with a familiar touch-screen interface, 2) multiple sets of interactive digital content, and 3) a variety of accompanying outer skins designed to attract the public. The exhibit prototype will be placed at bus transit nodes to reach adults, specifically targeting those without college degrees who are underrepresented in science centers. A range of possible STEM content domains will be selected and tested based on topics of interest to the public. If successful, given the several challenges involved, the feasibility study will be applied more fully around Portland and be a model for other cities to consider.
This CRPA award demonstrates to the public the unique use of nanoscience in Nature. The Blue Morpho butterfly is large, has blue wings and is eye catching to say the least. Its wings have been shown to exhibit interesting color characteristics under varying conditions. These characteristics and uniqueness are due to nano-molecules that are a chemical construction in the wing structure. Thus, this butterfly is the hook and segues into a discussion of nanoscience and crystal structures in Nature. Furthermore, the exhibit which is referred to as a flex-hibit is small and portable facilitating its use in out-of-museum demonstrations at public events and in rural areas. This is a colorful demonstration that is quick, interesting and reversible so audiences can be entertained for a short 5-10 minutes during which the "scientist" or staff member can briefly discuss nanoscience and how the butterfly uses this disguise. Other scientists may find this flex-hibit idea useful in their desire to demonstrate science concepts, as well. The integration of this work into the NISE network may pay large dividends in helping others with demonstrations. This is a collaboration between Georgia Tech and the Lawrence Hall of Science at Berkeley. This is a colorful demonstration that is quick, interesting and reversible so audiences can be entertained for a short 5-10 minutes during which the "scientist" or staff member can briefly discuss nanoscience and how the butterfly uses this disguise. Other scientists may find this flex-hibit idea useful in their desire to demonstrate science concepts, as well. The integration of this work into the NISE network may pay large dividends in helping others with demonstrations.
This award addresses the archaeological issues surrounding the ancestral Pueblo people and their Neolithic revolution or disappearance from the Mesa Verde region of southwestern US. The research describes the people, their living conditions and the environment, their impact on the region and the reason for their exodus to form new societies such as the Tewa-Pueblo society. The research and its results are significant, from both an archaeological and socio-cultural standpoint. An exhibit is planned, to explain and inform the public, in the History Colorado Center in Denver, Colorado, that will transfer this cultural knowledge to the under-served public including Native American and numerous rural residents. The effort is a collaborative endeavor involving the Crow Canyon Archaeological Center in Cortez, Colorado and the new History Colorado Center. The exhibit will feature a typical living area, a scientific area with discussion of tree rings, and an area for discussion with scientific experts. In addition, the deliverable will include a website for further discussion with scientist and for accessing the latest research efforts. The evaluation of this project is extensive starting from an overall evaluation of the museum itself and how to make this exhibit a significant part of the museum, pleasing to the audiences and how to improve its impact once the exhibit is open.
The University of California, Davis Tahoe Environmental Research Center (TERC), UC Davis W.M. Keck Center for Active Visualization in the Earth Sciences (KeckCAVES), ECHO Lake Aquarium and Science Center (ECHO), UC Berkeley Lawrence Hall of Science (LHS), and the Institute for Learning Innovation (ILI) will study how 3-D visualizations can most effectively be used to improve general public understanding of freshwater lake ecosystems and Earth science processes through the use of immersive three-dimensional (3-D) visualizations of lake and watershed processes, supplemented by tabletop science activity stations. Two iconic lakes will be the focus of this study: Lake Tahoe in California and Nevada, and Lake Champlain in Vermont and New York, with products readily transferable to other freshwater systems and education venues. The PI will aggregate and share knowledge about how to effectively utilize 3-D technologies and scientific data to support learning from immersive 3-D visualizations, and how other hands-on materials can be combined to most effectively support visitor learning about physical, biological and geochemical processes and systems. The project will be structured to iteratively test, design, and implement 3-D visualizations in both concurrent and staggered development. The public will be engaged in the science behind water quality and ecosystem health; lake formation; lake foodwebs; weather and climate; and the role and impact of people on the ecosystem. A suite of publicly available learning resources will be designed and developed on freshwater ecosystems, including immersive 3-D visualizations; portable science stations with multimedia; a facilitator's guide for docent training; and a Developer's Manual to allow future informal science education venues. Project partners are organized into five teams: 1) Content Preparation and Review: prepare and author content including writing of storyboards, narratives, and activities; 2) 3-D Scientific Visualizations: create visualization products using spatial data; 3) Science Station: plan, design, and produce hands-on materials; 4) Website and Multimedia: produce a dissemination strategy for professional and public audiences; 4) Evaluation: conduct front-end, formative, and summative evaluation of both the 3-D visualizations and science activity stations. The summative evaluation will utilize a mixed methods approach, using both qualitative and quantitative methods, and will include focus groups, semi-structured interviews, web surveys, and in-depth interviews. Leveraging 3-D tools, high-quality visual displays, hands-on activities, and multimedia resources, university-based scientists will work collaboratively with informal science education professionals to extend the project's reach and impact to an audience of 400,000 visitors, including families, youth, school field trip groups, and tourists. The project will implement, evaluate, and disseminate knowledge of how 3-D visualizations and technologies can be designed and configured to effectively support visitor engagement and learning about physical, biological and geochemical processes and systems, and will evaluate how these technologies can be transferred more broadly to other informal science venues and schools for future career and workforce development in these critical STEM areas.
Researchers at the American Association of Variable Star Observers, the Living Laboratory at the Boston Museum of Science, and the Adler Planetarium are studying stereoscopic (three-dimensional or 3D) visualizations so that this emerging viewing technology has an empirical basis upon which educators can build more effective informal learning experiences that promote learning and interest in science by the public. The project's research questions are: How do viewers perceive 3D visualizations compared to 2D visualizations? What do viewers learn about highly spatial scientific concepts embedded in 3D compared to 2D visualizations? How are viewers\' perceptions and learning associated with individual characteristics such as age, gender, and spatial cognition ability? Project personnel are conducting randomized, experimental mixed-methods research studies on 400 children and 1,000 adults in museum settings to compare their cognitive processing and learning after viewing two-dimensional and three-dimensional static and dynamic images of astronomical objects such as colliding galaxies. An independent evaluator is (1) collecting data on museum workers' and visitors' perceived value of 3D viewing technology within museums and planetariums and (2) establishing a preliminary collection of best practices for using 3D viewing technology based on input from museum staff and visitors, and technology creators. Spatial thinking is important for learning many domains of science. The findings produced by the Two Eyes, 3D project will researchers' understanding about the advantages and disadvantages of using stereoscopic technology to promote learning of highly spatial science concepts. The findings will help educators teach science in stereoscopic ways that mitigate problems associated with using traditional 2D materials for teaching spatial concepts and processes in a variety of educational settings and science content areas, including astronomy.
Mystic Seaport received an implementation grant from the National Endowment for the Humanities to fund a suite of online, onsite, offsite, and onboard public programs and exhibits that will provide new national insight into universal and important humanities themes, through an interdisciplinary exploration of historic and contemporary American whaling. The Museum and its partners will explore through this project how, when, and why dominant American perceptions of whales and whaling took their dramatic turns. The project will raise public awareness in New England and nationwide about the role the whaling industry played in the development of our nation’s multi-ethnic make-up, our domestic economy, our global impact and encounters, and our long-standing fascination with whales. And it will promote thought about the nation’s whaling heritage, and how it continues to shape our communities and culture.
The Pratt Museum will design and fabricate exhibits in its new museum facility in Homer, Alaska. This region is home to culturally diverse coastal communities which make their living predominantly from the sea. The exhibits will awaken a sense of connectedness between people and place and provide a variety of avenues for visitors to experience the stories of the Kachemak Bay region of South Central Alaska. The overall objectives of the exhibition are to present a personal perspective, a sense of place, and a responsibility to self and community. A balance of presentation will accomplish these goals. This grant will help fund: 1) workshops for the staff planning team, evaluator, and the design team, 2) design of the exhibition, 3) fabrication and installation in the Museum’s Main Gallery and adjacent spaces, and 4) gallery guides for selected themes.
For over 200 years, American women have contributed to paleontology and our understanding of the history of life. These contributions have never received the wide recognition of those made by men. Women's paleontological work was frequently unpublished or published without adequate acknowledgment. Tracing the contributions and experiences of women in paleontology, from a long-term historical perspective, will provide fascinating insights and an inspiring perspective on women in science seldom presented to the public. The Paleontological Research Institution (PRI) is uniquely positioned to share these untold stories in the form of a new traveling exhibition with associated programming, website, and book. In this planning project PRI will work with interpretive planners, evaluation consultants, historians, scientists, and museum educators to interview intended audiences, develop content, research artifacts and specimens, plan public programs, and begin preliminary exhibition design.
This project will design an ambitious multi-partner, multi-format, multi-venue project focused on the Arizona-Sonora borderlands. The project combines experienced co-directors and leading borderland scholars with more than a dozen Historical and Cultural Organizations (HCOs) in small and mid-sized communities to explore and interpret the unique cultures, history, and physical landscapes of the region. The project aims to foster historical perspectives on the international border, cross-cultural understanding, and a deeper sense of place among the region’s residents and visitors. A suite of interrelated physical and digital products will elaborate five themes: the border through time; bridging cultures across borders; nature and history—ties that bind; shared identity amid social diversity; and a storied landscape. Formats include an interpretive website and digital archive; a traveling exhibit co-hosted/produced with our HCO partners; and community sponsored public programs.
The Anchorage Museum, in partnership with the Washington State Historical Society and Cook Inlet Historical Society, will fabricate, and present a 7,500-square-foot exhibition on James Cook’s Third Voyage to the Pacific Ocean, titled Arctic Ambitions: Captain Cook and the Northwest Passage. The exhibition will open March 27, 2015 in Anchorage and run until September 11, at which time it will travel to the Washington State Historical Society in Tacoma. The exhibition will be part of the Municipality of Anchorage’s Centennial Celebration. Although Cook spent time in southern seas en route to America, the prime focus of the exhibition will be the Northwest Coast, mainland Alaska, the Aleutian Islands, the Bering Sea, Siberia, Kamchatka, and the Arctic Ocean.
Museums are increasingly engaging with their communities in understanding and addressing the complex questions of our society. How is this effort manifested in museum practice, and what is the impact of this work? Our study attempted to explore the boundaries of these questions by reviewing and synthesizing reports on InformalScience.org. The work was part of the NSF-funded Building Informal Science Education project (BISE). We selected a small set of reports of projects that aligned with our definition of social issues as conditions that are harmful to society, complex and characterized by a
In informal learning environments such as museums and science centers, researchers sometimes assess the effect of learners’ experiences by looking at their engagement. In this paper, researchers Barriault and Pearson describe a framework that identifies three different levels of visitor engagement with exhibits in a science center: initiation, transition, and breakthrough.