This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Through My Window is engineering education that applies research from the learning sciences—including the use of cognitive tools such as narrative and knowledge building—in an idea-centered digital environment. Together these approaches support deep learning and address the critical need of preparing young learners to participate in the knowledge society. The curriculum includes young adult novels; interactive, online learning modules; and offline enrichment
To date, no national studies of science-focused out-of-school time (OST) programs have been implemented, making it difficult to get a sense of program diversity and characteristics. In this paper, Laursen, Thiry, Archie, and Crane map the national landscape of U.S. OST science, technology, and engineering programs. The findings allow the authors to describe a generalized profile for each of eight types of OST program providers.
Researchers examined whether engineering activities and lessons can help students apply science and math content in real-world contexts and gain insights into the professional activities and goals of engineers.
We aim to understand how to help young people recognize the value of science in their lives and take initiative to see the world in scientific ways. Our approach has been to design life-relevant science-learning programs that engage middle-school learners in science through pursuit of personally meaningful goals. In this paper, we analyze the case studies of two focal learners in the Kitchen Science Investigators life-relevant, science-learning program. Our analysis highlights ways to design life-relevant science-learning programs to help learners connect science to their everyday lives in
The Clay Center for Arts and Sciences of West Virginia will create professional learning communities of teachers and after-school staff serving 7th grade students at seven partner schools using digital storytelling as a tool to explore energy-related topics impacting their communities. West Virginia's role as a leading coal producer and the impact of natural gas drilling served as strong influencing factors in the creation of this STEAM project, titled emPOWERed Stories. Students will create an exhibit that incorporates these digital stories. The results will inform the broader field on ways to better blend formal and informal education experiences to become more potent learning environments.
The University of Minnesota Extension (UME) contracted Garibay Group to conduct a summative evaluation of the Driven to Discover program (often referred to as D2D by youth participants and adult leaders) to assess how adult leaders in Informal Science Education (ISE) settings used the curriculum and citizen science projects as conduits to engage youth in scientific inquiry.
This is the final evaluation report on the Laurel Clark Earth Camp Experience, a multi-component program to incorporate NASA satellite data into summer field programs for teens, environmental and water education for teachers, environmental after-school clubs and Earth Science exhibits at the Arizona- Sonora Desert Museum.
This full scale research and development collaborative project between Smith College and Springfield Technical Community College improves technical literacy for children in the area of engineering education through the Through My Window learning environment. The instructional design of the learning environment results from the application of innovative educational approaches based on research in the learning sciences—Egan's Imaginative Education (IE) and Knowledge Building (KB). The project provides idea-centered engineering curriculum that facilitates deep learning of engineering concepts through the use of developmentally appropriate narrative and interactive multimedia via interactive forums and blogs, young adult novels (audio and text with English and Spanish versions), eight extensive tie-in activities, an offline teachers’ curriculum guide, and social network connections and electronic portfolios. Targeting traditionally underrepresented groups in engineering—especially girls—the overarching goals of the project are improving attitudes toward engineering; providing a deeper understanding of what engineering is about; supporting the development of specific engineering skills; and increasing interest in engineering careers. The project will address the following research questions: What is the quality of the knowledge building discourse? Does it get better over time? Will students, given the opportunity, extend the discourse to new areas? What scaffolding does the learning environment need to support novice participants in this discourse? Does the use of narrative influence participation in knowledge building? Are certain types of narratives more effective in influencing participation in knowledge building? Evaluative feedback for usability, value effectiveness, and ease of implementation from informal educators and leaders from the Connecticut After School Network CTASN) will be included. The evaluation will include documentation on the impact of narrative and multimedia tools in the area of engineering education. Currently, there is very little research regarding children and young teen engagement in engineering education activities using narrative as a structure to facilitate learning engineering concepts and principles. The research and activities developed from this proposed project contributes to the field of Informal Science and Engineering Education. The results from this project could impact upper elementary and middle-school aged children and members from underrepresented communities and girls in a positive way.
The purposes of the STUDIO 3D evaluation were to collect information about the impact upon student learning as a result of participating in the STUDIO 3D Project, as well as to elicit information for program improvement. Areas of inquiry include recruiting and retention, impact on project participants, tracking student impacts, and the project as a whole.
Calabrese Barton and colleagues examine the beliefs and science practices of two students in a two-year study across settings. The study seeks to answer the question, “What do girls from non-dominant populations do to author themselves into or out of science, in spite of – or because of – their grades?” The study also examines how structures such as teacher support, community organizations, and school tracking systems promote or hinder opportunities for these students to author identities in science.
Students with special educational needs score significantly below their peers across several measures of science achievement. However, educational approaches that provide appropriate scaffolding and support, such as the inquiry-based science writing heuristic described in this paper, can benefit special educational needs students and ensure an equitable experience for all.
In this paper, Anderman and colleagues examine the skills adolescents need in order to learn science effectively. They note that many negative experiences associated with science learning could be avoided if educators were more aware of the abilities of adolescents and the types of environments that foster particular abilities. They offer seven recommendations to practitioners.