"Let's Talk" will bring together professionals who are engaged in facilitating, evaluating or studying dialogue in STEM and history-based institutions for a symposium in Summer of 2015 structured as a 'meta-conversation' about what we know about dialogue. The project addresses the lack of a generalizable body of knowledge about dialogue, the need for instructional models and theory to inform the use of Dialogue programming, and the opportunity to prepare future museum professionals. Co-PI's: Kris Morrissey and Robert Garfinkle. Key activities include: Research Synthesis Paper; Symposium of professionals across STEM and history-based museums; Development of theory-based resources.
This is a collaborative research project between Montana State University (MSU), Bozeman, USA and Gorno-Altaisk State University (GASU), Altai Republic, Russian Federation. In this NSF International Research Experiences for Students project MSU students will travel to the Altai Republic and work with faculty and students at Gorno-Altaisk University to conduct research related to native language use in learning ecological sciences in informal settings. Student researchers will conduct individual studies related to the project theme of science learning in ecological contexts. This project will help students learn how to conduct educational research related to the ecological learning experiences of indigenous youth (ages12-16) and the use and influence of native language in learning about environment. This research directly addresses the results of our prior NSF supported work that identified shared issues of indigenous people, natural resources and the decline of native language use among underserved populations in the Altai and Yellowstone systems. This project contributes significantly to our emerging understanding of science learning in informal settings. It addresses a unique conception of ecological learning in three dimensions; personal, community and cultural perspectives. Research and education objectives align with modern conceptualizations of informal science learning as proposed by the National Academies of Science (2009). The MSU-GASU collaboration provides a holistic view of science learning and will unite diverse intellectual resources and research efforts in unique ecological and social systems. Both the Yellowstone and Altai mountain systems are of global concern as part of worldwide natural and cultural resources impacted by pervasive development, recreation and tourism activities and climate change. The underlying theoretical foundation for learning proposed in this research project is the basis for effective approaches to enable isolated rural populations to contribute traditional knowledge and wisdom to contemporary issues related to world-wide ecological and cultural issues including global climate change. Aspects of sustainability practices that are embedded in the knowledge and social processes of both marginalized and dominant societies will be better understood and taken into consideration for future research and education activities. Research outcomes will contribute to more effective informal, place-based and experiential science learning to help empower communities and decision makers in meeting challenges of sustainability. Inevitably, we expect this work to extend our understanding of science learning related to critical natural and cultural resources and their management. An understanding of how, why and where learning takes place will help extend the US and international research and education agendas related to informal science learning, natural and cultural resource management and sustainability.
Non-technical part.
This is a collaborative research project between Montana State University (MSU), Bozeman, USA and Gorno-Altaisk State University (GASU), Altai Republic, Russian Federation. In this NSF International Research Experiences for Students project MSU students will travel to the Altai Republic and work with faculty and students at Gorno-Altaisk University to conduct research related to native language use in learning ecological sciences in informal settings. Student researchers will conduct individual studies related to the project theme of science learning in ecological contexts. This project we will help students learn how to conduct educational research related to the ecological learning experiences of indigenous youth (ages12-16) and the use and influence of native language in learning about environment. Three cohorts of five MSU students will travel to the Altai Republic for eight weeks in the summers of 2013, 2014 & 2015. MSU students will comprise a research team with GASU science, education and language faculty to conduct research in the city of Gorno-Altaisk, two medium size villages such as Onguday and two small villages such as Karakol. We expect to work with youth in each setting and interview a representative sample at each site. As a research team we expect to gain a better understanding of how indigenous youth use native Altai language in informal settings to learn about environment. We expect to compare sights within the study. As part of our larger research interests in ecological learning and native people, we will conduct a similar comparative study in the Yellowstone Ecosystem with Native American youth. The studies associated with this project will add to our understanding about the extent and nature of native language use to learn science in underserved populations in very sensitive and unique ecological and cultural settings.
DATE:
-
TEAM MEMBERS:
Michael BrodyClifford MontagneArthur BangertChristine StantonShane Doyle
The Badges for College Credit project designs and researches: (1) a digital badge system that leads to college credit as the context for investigating how to integrate badges with learning programs; (2) how to assess learning associated with badges; and (3) how badges facilitate learning pathways and contribute to science identity formation. The project is one of the first efforts to develop a system to associate informal science learning with college credit. The project will partner with three regional informal science institutions, the Pacific Science Center, the Future of Flight, and the Seattle of Aquarium, that will facilitate activities for participants that are linked to informal science learning and earning badges. The project uses the iRemix platform, a social learning platform, as a delivery system to direct participants to materials, resources, and activities that support the learning goals of the project. Badges earned within the system can be exported to the Mozilla Open Badges platform. Participants can earn three types of badges, automatic (based on participation), community (based on contributions to building the online community), and skill (based on mastery of science and communication) badges. Using a learning ecologies framework, the project will investigate multiple influences on how and why youth participate in science learning and making decisions. Project research uses a qualitative and quantitative approach, including observations, interviews, case studies, surveys, and learning analytics data, and data analytics. Project evaluation will focus on the nature and function of the collaboration, and on the scale-up aspects of the innovation and expansion, by: (1) analyzing and documenting effective procedures,and optimal contexts for the dissemination of the model and (2) by analyzing the collaboration between informal science organizations and higher education.
DATE:
-
TEAM MEMBERS:
Carrie TzouKaren LennonAmanda GoertzGray Kochlar-Lindgren
This award continues funding of a Center to conduct research and education on the interactions of nanomaterials with living systems and with the abiotic environment. The goals of this Center are to develop a predictive understanding of biological and ecological toxicology for nanomaterials, and of their transport and transformation in the environment. This Center engages a highly interdisciplinary, multi-institutional team in an integrated research program to determine how the physical and chemical properties of nanomaterials determine their environmental impacts from the cellular scale to that of entire ecosystems. The research approach promises to be transformative to the science of ecotoxicology by combining high throughput screening assays with computational and physiological modeling to predict impacts at higher levels of biological organization. The Center will unite the fields of engineering, chemistry, physics, materials science, cell biology, ecology, toxicology, computer modeling, and risk assessment to establish the foundations of a new scientific discipline: environmental nanotoxicology. Research on nanomaterials and development of nanotechnology is expanding rapidly and producing discoveries that promise to benefit the nation?s economy, and improve our ability to live sustainably on earth. There is now a critical need to reduce uncertainty about the possible negative consequences of nanomaterials in the environment, while at the same time providing guidelines for their safe design to prevent environmental and toxicological hazards. This Center addresses this societal need by developing a scientific framework of risk prediction that is paradigm-shifting in its potential to keep pace with the commercial expansion of nanotechnology. Another impact of the Center will be development of human resources for the academic community, industry and government by training the next generation of nano-scale scientists, engineers, and regulators to anticipate and mitigate potential future environmental hazards of nanotechnology. Partnerships with other centers will act as powerful portals for the dissemination and integration of research findings to the scientific, educational, and industrial communities, both nationally and internationally. This Center will contribute to a network of nanotechnology centers that serve the national needs and expand representation and access to this research and knowledge network through programs directed at California colleges serving underrepresented groups. Outreach activities, including a journalist-scientist communication program, will serve to inform both experts and the public at large about the safety issues surrounding nanotechnology and how to safely produce, use, and dispose of nanomaterials.
DATE:
-
TEAM MEMBERS:
Andre NelYoram CohenHilary GodwinArturo KellerPatricia Holden
Boston's Museum of Science (MOS), with Harvard as its university research partner, is extending, disseminating, and further evaluating their NSF-funded (DRL-0714706) Living Laboratory model of informal cognitive science education. In this model, early-childhood researchers have both conducted research in the MOS Discovery Center for young children and interacted with visitors during the museum's operating hours about what their research is finding about child development and cognition. Several methods of interacting with adult visitors were designed and evaluated, including the use of "research toys" as exhibits and interpretation materials. Summative evaluation of the original work indicated positive outcomes on all targeted audiences - adults with young children, museum educators, and researchers. The project is now broadening the implementation of the model by establishing three additional museum Hub Sites, each with university partners - Maryland Science Center (with Johns Hopkins), Madison Children's Museum (with University of Wisconsin, Madison), and Oregon Museum of Science and Industry (with Lewis & Clark College). The audiences continue to include researchers (including graduate and undergraduate students); museum educators; and adults with children visiting the museums. Deliverables consist of: (1) establishment of the Living Lab model at the Hub sites and continued improvement of the MOS site, (2) a virtual Hub portal for the four sites and others around the country, (3) tool-kit resources for both museums and scientists, and (4) professional symposia at all sites. Intended outcomes are: (1) improve museum educators' and museum visiting adults' understanding of cognitive/developmental psychology and research and its application to raising their children, (2) improve researchers' ability to communicate with the public and to conduct their research at the museums, and (3) increase interest in, knowledge about, and application of this model throughout the museum community and grow a network of such collaborations.
Research shows that participation and interest in science starts to drop as youth enter high school. This is also the point when science becomes more complex and there is increased need for content knowledge, mathematics capability, and computer or computational knowledge. Evidence suggests that youth who participate in original scientific research are more likely to enter and maintain a career in science as compared to students who do not have these experiences. We know young people get excited by space science. This project (STEM-ID) is informed by previous work in which high school students were introduced to scientific research and contributed to the search for pulsars. Students were able to develop the required science and math knowledge and computer skills that enabled them to successfully participate. STEM-ID builds on this previous work with two primary goals: the replication of the local program into a distributed program model and an investigation of the degree to which authentic research experiences build strong science identities and research self-efficacies. More specifically the project will support (a) significant geographic expansion to institutions situated in communities with diverse populations allowing substantial inclusion of under-served groups, (b) an online learning and discovery environment that will support the participation of youth throughout the country via online activities, and (c) opportunities for deeper participation in research and advancement within the research community. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and understanding of, the design and development of STEM learning in informal environments. STEM-ID will serve 2000 high school youth and 200 high school teachers in afterschool clubs with support from 30 undergraduate and graduate students and 10 college/university faculty. Exploratory educational research will determine the broad mechanisms by which online activities and in-person and online peer-mentor teacher-scientist interactions influence science identity, self-efficacy, motivation, and career intentions, as well as a focused understanding of the mechanisms that influence patterns of participation. Youth will be monitored longitudinally through the first two years of college to provide an understanding of the long-term effects of out-of-class science enrichment programs on STEM career decisions. These studies will build an understanding of the best practices for enhancing STEM persistence in college through engagement in authentic STEM programs before youth get to college. In addition to the benefits of the education research, this program may lead participants to discover dozens of new pulsars. These pulsars will be used for fundamental advances such as for testing of general relativity, constraining neutron star masses, or detecting gravitational waves. The resulting survey will also be sensitive to transient signals such as sporadic pulsars and extragalactic bursts. This project provides a potential model for youth from geographical disparate places to participate in authentic research experiences. For providers, it will offer a model for program delivery with lower costs. Findings will support greater understanding of the mechanisms for participation in STEM. This work is being led by West Virginia University and the National Radio Astronomy Observatory. Participating sites include California Institute of Technology, Cornell University, El Paso Community College, Howard University, Montana State University, Penn State University, Texas Tech University, University of Vermont, University of Washington, and Vanderbilt University.
A recent report by the Association for Computing Machinery estimates that by decade's end, half of all STEM jobs in the United States will be in computing. Yet, the participation of women and underrepresented groups in post-secondary computer science programs remains discouragingly and persistently low. One of the most important findings from research in computer science education is the degree to which informal experiences with computers (at many ages and in many settings) shape young people's trajectories through high school and into undergraduate degree programs. Just as early language and mathematics literacy begins at home and is reinforced throughout childhood through a variety of experiences both in school and out, for reasons of diversity and competency, formal experiences with computational literacy alone are insufficient for developing the next generation of scientists, engineers, and citizens. Thus, this CAREER program of research seeks to contribute to a conceptual and design framework to rethink computational literacy in informal environments in an effort to engage a broad and diverse audience. It builds on the concept of cultural forms to understand existing computational literacy practices across a variety of learning settings and to contribute innovative technology designs. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds new approaches to and evidence-based understanding of the design and development of STEM learning in these settings. This CAREER program of research seeks to understand the role of cultural forms in informal computational learning experiences and to develop a theoretically grounded approach for designing such experiences for youth. This work starts from the premise that new forms of computational literacy will be born from existing cultural forms of literacy and numeracy (i.e., for mathematical literacy there are forms like counting songs -- "10 little ducks went out to play"). Many of these forms play out in homes between parents and children, in schools between teachers and students, and in all sorts of other place between friends and siblings. This program of study is a three-phased design and development effort focused on key research questions that include understanding (1) how cultural forms can help shape audience experiences in informal learning environments; (2) how different cultural forms interact with youth's identity-related needs and motivations; and (3) how new types of computational literacy experiences based on these forms can be created. Each phase includes inductive research that attempts to understand computational literacy as it exists in the world and a design phase guided by concrete learning objectives that address specific aspects of computational literacy. Data collection strategies will include naturalist observation, semi-structured, and in-depth interviews, and learning assessments; outcome measures will center on voluntary engagement, motivation, and persistence around the learning experiences. The contexts for research and design will be museums, homes, and afterschool programs. This research builds on a decade of experience by the PI in designing and studying computational literacy experiences across a range of learning settings including museums, homes, out-of-school programs, and classrooms. Engaging a broad and diverse audience in the future of STEM computing fields is an urgent priority of the US education system, both in schools and beyond. This project would complement substantial existing efforts to promote in-school computational literacy and, if successful, help bring about a more representative, computationally empowered citizenry. The integrated education plan supports the training and mentoring of graduate and undergraduate students in emerging research methods at the intersection of the learning sciences, computer science, and human-computer interaction. This work will also develop publically available learning experiences potentially impacting thousands of youth. These experiences will be available in museums, on the Web, and through App stores.
One challenge in scaling up effective educational programs is how to adjust implementation to local contexts. One solution that the authors Penuel, Fishman, Cheng, and Sabelli propose is “design-based implementation research,” (DBIR) in which researchers and practitioners collaboratively identify problems and strategies during implementation while learning from this process to support innovations in new contexts.
AccessComputing is a NSF-funded Broadening Participation in Computing alliance with the goal of increasing the participation and success of people with disabilities in computing fields. AccessComputing is in its 10th year of funding. It supports students with disabilities from across the country in reaching critical junctures toward college and careers by providing advice, resources, mentoring opportunities, professional contacts, and funding for tutoring, internships, and computing conferences. For educators and employers, it offers institutes and workshops to build awareness of universal design and accommodation strategies, and to aid in recruiting and supporting students with disabilities through the development of inclusive programs and education on promising practices.
In order to attract and retain underrepresented student groups (USGs) who aspire to major in STEM fields, educators recognize that science and math instruction must improve and also develop students’ non-cognitive and social-emotional skills. Foremost in that effort is Xavier University of Louisiana, a historically black and Catholic university located in the heart of New Orleans. Throughout the past thirty years, Xavier compiled an extraordinary record as a top producer of African Americans who receive bachelor’s degrees in biology, chemistry, and physics. Although Xavier enrolls only
As interest in Science, Technology, Engineering, and Mathematics (STEM) education grows (Olson & Riordan, 2012), the need for professionals to clearly communicate sophisticated concepts associated with these areas also increases (Fischoff & Scheufele, 2013). This evaluation focuses on a 3 credit university course “Training in Science Education Outreach” which utilizes a novel course structure. The course’s main aim is to teach graduate and undergraduate students how to speak to the public about science, focusing specifically on language science. The structure of the course is non-traditional
The digital revolution has transformed how young people discover and pursue their interests; how they communicate with and learn from other people; and how they encounter and learn about the world around them. How can we identify best practices for incorporating new media technologies into learning environments in a way that resonates with youth, including their interests, goals, and the ways they use technology in their everyday lives? How do we resolve the need to document and recognize informal STEM learning and connect it to formal education contexts? What strategies can be developed for inspiring and tracking student progress towards the learning goals outlined in the Next Generation Science Standards (NGSS)? These questions are the underlying motivation for this CAREER program of research. Digital badges represent a specific kind of networked technology and have been touted as an alternative credentialing system for recognizing and rewarding learning across domains, both inside and outside of formal education contexts. While there is considerable enthusiasm and speculation around the use of digital badges, the extent to which they succeed at empowering learners and connecting their learning across contexts remains largely untested. This project seeks to fill this gap in knowledge. The approach taken for this program of study is a three phased design-based research effort that will be focused on four objectives: (1) identifying design principles and support structures needed to develop and implement a digital badge system that recognizes informal STEM learning; (2) documenting the opportunities and challenges associated with building a digital badge ecosystem that connects informal learning contexts to formal education and employment opportunities; (3) determining whether and how digital badges support learners' STEM identities; and (4) determining whether and how digital badges help learners to connect their informal STEM learning to formal education and employment opportunities. In Phase 1, an existing prototype created in prior work at Seattle's Pacific Science Center will be developed into a fully functional digital badge system. In Phase 2, the PI will also work collaboratively with higher education stakeholders to establish formal mechanisms for recognizing Pacific Science Center badges in higher education contexts. In Phase 3, the badge ecosystem will be expanded and students' use of and engagement with badges will be tracked as they apply to and enter college. The project involves high school students participating in the Discovery Corps program at the Pacific Science Center, undergraduate and graduate students at the University of Washington, and stakeholders in the K-12 and higher education community in Seattle. Educational activities integrated with this program of research will support: (1) mentoring University of Washington students throughout the project to develop their skills as practice-oriented researchers; (2) incorporating the research processes and findings from the project into university courses aimed at developing students' understanding of the opportunities and challenges associated with using new media technologies to support learning; and (3) using the research findings to develop educational outreach initiatives to support other informal STEM learning institutions in their use of digital badges.