Consideration of the needs of individuals with a wide range of disabilities is not always considered in the early design stages of an informal STEM learning (ISL) activity or program. The primary access approach for people with disabilities becomes the provision of accommodations once the ISL product or environment is created. In contrast, the Universal Design approach considers users with a wide range of characteristics throughout the design process and works to create products and environments that are accessible, usable, and inclusive. This project, called AccessISL, led by the University of Washington's DO-IT (Disabilities, Opportunities, Internetworking and Technology) Center and Museology Program, includes an academic museology program and local ISL sites, representing museums, zoos, aquariums, makerspaces, science centers, and other sites of informal STEM learning. Insights will be gained through the engagement of people with disabilities, museology graduate students and faculty, and ISL practitioners. The AccessISL project model, composed of a set of approaches and interventions, builds on existing research and theory in the fields of education science, change management, effective ISL practices, and inclusive design processes. The project will collect evidence of policies and practices (or lack thereof) that improve the inclusiveness of ISL with respect to a wide range of disabilities and considers approaches for the design and development of new strategies; explores what stakeholders need to make change happen; uncovers challenges to the adoption of inclusive practices in public ISL settings and explores ways to overcome them; and proposes relevant content that might be included in museology curriculum. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This project addresses the following two objectives:
For ISL personnel and museology faculty: to increase knowledge, skills, and actions to make ISL programs, facilities, courses, and resources more welcoming and accessible to participants with disabilities and embed relevant practices within their work.
For postsecondary STEM students with disabilities and museology students: to increase knowledge and skills in advocating for ISL offerings that are welcoming and accessible to everyone, including those with a wide variety of disabilities, and to encourage individuals with disabilities to pursue careers in ISL.
The project employs a student-centered approach and a set of practices that embrace the social model of disability, social justice education, disability as a diversity issue, intersectionality, and Universal Design. A leadership team of interns--each member a STEM student with a disability or a museology graduate student--along with project staff will engage with the University of Washington's Museology Program to identify and implement strategies for making ISL activities and courses more welcoming and accessible to individuals with disabilities. An online community of practice will be developed from project partners and others nationwide. A one-day capacity building institute will be held to include presentations, student/personnel panels for sharing project and related experiences, and group discussions to explore issues and further identify systemic changes to make ISL programs more welcoming and accessible to individuals with disabilities. As prototypes of the AccessISL Model are developed, evaluation activities will primarily be formative (looking for strengths and weaknesses) and remedial (identifying/implementing changes that could be made to improve the model). The model will continue to be fine-tuned through formative evaluation. Evaluation of the model components will focus on the experience of a range of stakeholders in the project. Specifically, quantitative data collected will include levels and quality of engagement, accessibility recommendations and products developed, and delivery of ISL services. Qualitative data will be collected through observations, surveys, focus groups, interviews, and case studies.
AccessISL project products will include proceedings of an end-of-project capacity building institute, promising practices, case studies, a video, and other online resources to help ISL practitioners and museology faculty that will result in making future ISL opportunities more inclusive of people with disabilities. AccessISL will advance knowledge and ensure long-term impact using multiple strategies:
broadening the STEM participation of people with disabilities as well as women, racial/ethnic minorities, and other underrepresented groups through the application of universal design
strengthening associations and creating synergy and durable relationships among stakeholders,
encouraging teaching about disability, accessibility, and universal design in museology courses,
empowering students with disabilities and current and future ISL practitioners to advocate for accessible ISL and develops an infrastructure to promote accessible ISL programs nationwide, and
contributing to the body of promising practices with products that will (a) enhance understanding of issues related to the inclusion of people with disabilities in ISL programs and (b) promote inclusive practices.
Outcomes will benefit society by making STEM opportunities available to more people and enhancing STEM fields with the talents and perspectives of people with disabilities.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
This workshop series, convened by the Kavli, Rita Allen, Packard and Moore Foundations, was intended to view the entire system of people who support scientists’ engagement and communication efforts in order to explore how this system can be most effective and sustainable. The discussions examined where this system is thriving, the limits people within the system face and what can be done to ensure their efforts are commensurate with the demand for quality communication and engagement support.
Conducted over four closely scheduled workshops in late 2017 and early 2018, the convenings brought
This award was provided as part of NSF's Social, Behavioral and Economic Sciences Postdoctoral Research Fellowships (SPRF) program and is supported by SBE's Developmental Sciences program and the Directorate for Education and Human Resources' (EHR) Advancing Informal STEM Learning program. The goal of the SPRF program is to prepare promising, early career doctoral-level scientists for scientific careers in academia, industry or private sector, and government. SPRF awards involve two years of training under the sponsorship of established scientists and encourage Postdoctoral Fellows to perform independent research. NSF seeks to promote the participation of scientists from all segments of the scientific community, including those from underrepresented groups, in its research programs and activities; the postdoctoral period is considered to be an important level of professional development in attaining this goal. Each Postdoctoral Fellow must address important scientific questions that advance their respective disciplinary fields. Under the sponsorship of Dr. Sandra D. Simpkins at the University of California, Irvine, this postdoctoral fellowship award supports an early career scientist exploring high-quality and culturally responsive, math afterschool program (ASP) practices for under-represented minority (URM) youth. Mathematical proficiency is the foundation of youth's STEM pursuits. Yet today, far too many youth do not pursue STEM based on a perception that they are "not good at math". Students need to engage in contexts that spark their interest and their continued mastery and growth. ASPs are settings for such dynamic opportunities, particularly for URM students such as Latinos who attend lower quality schools and do not feel supported. In college, URM students often struggle with uninspiring and culturally incongruent STEM learning environments. The intergenerational nature of university-based STEM ASPs, whereby younger students are paired with undergraduate (UG) mentors, are opportunities to support both K-12 and UG students' motivational beliefs in math and STEM more broadly. This project will examine these intergenerational developmental processes in the context of a math enrichment ASP located at a Hispanic-Serving Institution. By studying how ASPs can serve as an important lever for promoting URM students' access and success in STEM, this project seeks to meaningfully inform efforts to broaden the participation of underrepresented groups in these fields.
This project seeks to understand how participating in a math enrichment ASP supports both youth participants' and UG mentors' motivational beliefs in math; to describe high-quality and culturally responsive practices; and to understand how to support the effectiveness of youth-staff relationships. To accomplish these research objectives, data will be collected from both youth participants and UG mentors through multiple methods including surveys, in-depth interviews, participant-observations, and video observations of youth-staff interactions. This project will add to our understanding of university-ASP partnerships. Further, the knowledge gained from this study will impact the larger landscape of practice and research on STEM ASPs by 1) addressing critical gaps in the current literature on high-quality and culturally responsive STEM ASP practices and 2) informing ASP staff development training. Overall, this mixed methods project will provide critical and rich information on the ways that ASPs can effectively deliver on its promise of promoting positive development for all youth, especially URM youth who may need and benefit from these spaces the most. The invaluable insight garnered from this study will be disseminated to traditional academic audiences to advance knowledge, as well as to local, state, and national organizations to inform the larger landscape of practice in STEM ASPs.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Scientists (and engineers) wishing to conduct public engagement do so in the context of established disciplinary norms and complex institutional systems that may support or limit their success. This report seeks to convey the known complexity, unique challenges, and opportunities for universities to better support for scientists in their public engagement work. The report is intended to drive discussion towards deeper exploration and development of actionable next steps.
This is the executive summary of report from Workshop III: Academic Institutions, part of the Support Systems for
Why do scientists volunteer to be involved in public engagement in science? What are the barriers that can prevent them participating in dialogue with society? What can be done to facilitate their participation? We report the outcomes of a series of focus groups conducted with the young scientists who volunteered in SISSA for schools (S4S), the Children's University program of the International School for Advanced Studies (SISSA) in Trieste, Italy.
S4S is based on the contribution of PhD students as volunteers, has a participatory character, and is attentive to social and gender inclusion
DATE:
TEAM MEMBERS:
Simona CerratoValentina DaelliHelena PertotOlga Puccioni
Scientists (and engineers) wishing to conduct public engagement do so in the context of established disciplinary norms and complex institutional systems that may support or limit their success. This report seeks to convey the known complexity, unique challenges, and opportunities for universities to better support for scientists in their public engagement work. The report is intended to drive discussion towards deeper exploration and development of actionable next steps.
This is a report from Workshop III: Academic Institutions, part of the Support Systems for Scientists' Communication and
Learn about how a university-based teacher preparation program, public schools, and local science-focused museums implement an ecological approach to STEM learning in Chicago.
DATE:
TEAM MEMBERS:
Daniel BirminghamLara SmetanaHeidi RouleauJenna Carlson
resourceresearchProfessional Development, Conferences, and Networks
In our efforts to sustain U.S. productivity and economic strength, underrepresented minorities (URM) (for the purpose of this paper defined as persons of African American, Hispanic American, and Native American racial/ethnic descent), provide an untapped reservoir of talent that could be used to fill technical jobs. Over the past 25 years, educational diversity programs have encouraged and supported URM pursuing STEM degrees. Yet, their representation in STEM still lags far behind that of White, non-Hispanic men.
To understand the reasons why this is occurring, the American Association for
DATE:
TEAM MEMBERS:
Yolanda S. GeorgeVirginia Van HorneShirley M. Malcom
Many scientists want to connect with the public, but their efforts to do so are not always easy or effective. Visionary programs and institutions are leading the way identifying the support needed to enable scientists’ connections with the public. However, the current appetite by -- and demand for -- scientists to do this exceeds the capacity of those who facilitate quality communication and engagement efforts. More can be done to ensure that those who support scientists are networked, sharing best practices, and supported by a reliable infrastructure.
This workshop series, convened by the Kavli, Rita Allen, Packard and Moore Foundations, was intended to view the entire system of people who support scientists’ engagement and communication efforts in order to explore how this system can be most effective and sustainable. The discussions examined where this system is thriving, the limits people within the system face and what can be done to ensure their efforts are commensurate with the demand for quality communication and engagement support.
Conducted over four closely scheduled workshops in late 2017 and early 2018, the convenings brought together leaders in different parts of the field who bridge scientists and the public and led to the emergence of a number of key priority areas. While the initial intention was to also hold a plenary event to provide a more holistic view of scientists’ support system in order to collectively discern directions to advance the field, we feel a more efficient way forward right now is to focus our efforts and resources on building community and advancing these priority areas.
Our invitation-only workshops brought together scientists, academic leaders, engagement professionals, researchers, communication trainers, and foundation leaders. For each workshop, we also commissioned a “landscape overview”, to better understand the high-level state of each community. Workshops included:
Workshop I: Communication and engagement training programs - Dec. 4-5, 2017 at SUNY Global Center/Alan Alda Center for Communicating Science in New York
Workshop II: Associations, societies and other professional organizations - Feb. 28 - March 1, 2018 at the Howard Hughes Medical Institute in Chevy Chase, MD
Workshop III: Academic institutions - March 27-28, 2018 at UC San Diego
Workshop IV: Science engagement facilitators (museums, science festivals, connectors) - May 2-3, 2018 at Monterey Bay Aquarium
TBD - Workshop V: Plenary event
The goal of the workshops was to explore how to ensure scientists’ communication and engagement support is effective and sustained. In doing so, we hoped to 1) deepen our understanding of how scientists are currently supported in these areas, 2) map the broader support system to expose the opportunities and obstacles that play a role in achieving this goal, and 3) identify strategic and practical next steps that move us closer to this goal. This initiative also aimed to forge and strengthen networks across communities and institutions – and in so doing, take a view of the entire system to explore how everyone can better ensure their efforts are impactful, mutually supportive, and connected to a greater whole.
Included in the links below are summaries from each workshop.
The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.
The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.
The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE:
-
TEAM MEMBERS:
Maritza MacdonaldMeryle WeinsteinRosamond KinzlerMordecai-Mark Mac LowEdmond MathezDavid Silvernail
resourceprojectProfessional Development and Workshops
For the United States to maintain its leading role on the world economic stage, it is essential to strengthen the American workforce in science, technology, engineering, and mathematics (STEM). Our current prosperity and our future success hinge on recruiting, training, and employing the creative and industrious STEM professionals who drive the innovation economy. Strengthening the American STEM workforce depends, in part, on broadening participation to students from demographics that have traditionally been underrepresented in STEM. This NSF INCLUDES Launch Pilot project will foster recruitment, training, and employment for indigenous STEM students, where the term "indigenous" comprises the terms Native American, American Indian, Alaskan Native, and Hawaiian Native. Specifically, this project will support the design and development of a first-of-its-kind network focused on environmental stewardship of indigenous lands. The network will comprise both tribal and government partners and will be organized by three faculty at the University of Colorado-Denver. Student recruitment, training, and employment will be organized around the unifying principle of land stewardship. The focus on land stewardship has been selected not only because it demands the expertise of STEM professionals, but also because land stewardship is among the top motivations for indigenous students considering STEM careers. Accordingly, this work is important on several fronts: It addresses the recognized need for STEM professionals; it broadens participation to students from underrepresented groups; and it provides a test bed for collective action by a first-of-its-kind network of tribal, government, and university partners.
The proposed network will work together to design, deploy, and debug a unique educational program giving students an opportunity to train for employment as tribal liaisons in the environmental field. In particular, this program will address the need for culturally-sensitive, scientifically-trained individuals who can serve as tribal liaisons between tribal and non-tribal organizations, which will allow them to prevent, minimize, or manage environmental incidents through their understanding of STEM principles and organizational dynamics. All students in this educational program will earn a regular four-year STEM degree, but a key feature of the program is that they will also participate in training and internships designed to provide background with nontechnical matters such as cultural awareness, environmental regulations, and organizational dynamics. Additionally, this educational program is designed to support recruitment of indigenous students by (1) providing a clear vision of a high-impact, culturally-relevant professional career and by (2) providing a cultural connection with obtaining a college degree. Taken together, the network aims to increase enrollment, retention, graduation, and alumni activity by indigenous students. Best practices and strategies for collective impact will be used to document achievement of the network in increasing the enrollment, retention, graduation, and alumni activity of indigenous students in higher education and in STEM careers. Continuous feedback will be collected to assess partner engagement and durability, and student satisfaction, performance, and progress. The network is expected to be sustainable because it addresses a demonstrated need; it is expected to be scalable because scientifically aware, culturally-sensitive individuals who can serve as tribal liaisons are needed not only regionally, but nationally.
DATE:
-
TEAM MEMBERS:
Timberley RoaneDavid MaysRafael Moreno-SanchezBrenda AllenGrace RedShirt Tyon
resourceprojectProfessional Development, Conferences, and Networks
Ecology Plus (Ecology+) is an NSF INCLUDES Launch Pilot project with a goal of increasing the participation of underrepresented minorities in a broad range of career pathways where ecology plays a role. This project recognizes that both innovative scientific research and wider societal participation are needed for effective and equitable solutions to environmental issues that directly impact societal well-being and national security. Both research and policy are enhanced by full participation of all sectors of society. Despite the existence of multiple programs over many years, barriers to the participation of underrepresented minorities in ecology persist. One overarching systemic issue remains critical: that insufficient connections among programs result in breaks along critical transition points in career pathways. Project activities will lay the groundwork by developing a regional approach to alliance-building that can be extended across the nation.
Ecology+ will use a collective impact framework -- characterized by a common agenda, shared measurement, mutually reinforcing activities, continuous communication, and backbone support -- to optimize career guidance and support for undergraduate students, graduate students and early career technical and professional scientists. Starting in the Washington-Baltimore region, key objectives of the project are to develop infrastructure for effective communications among partners with the capacity to expand nationally; map potential career pathways with associated sets of necessary competencies, opportunities and mentors, and; empower alliance participants to overcome institutional barriers and patterns of unconscious bias. Ecology+ will: a) establish an online mentoring platform; b) offer a career fair with motivational talks and guidance on individual career development plans; c) offer a series of relevant skills workshops; d) arrange research or internship experiences, and; e) facilitate awareness and networking opportunities with employers from agencies, business and nonprofit sectors. The value of Ecology+ lies in its comprehensive, integrated approach that will bring new partners and their resources into a transformative and systemic response to the key barriers affecting underrepresented minorities in science.