There is a revolution occurring in how, when, where and even why people learn science. Learning today is continuous and on-demand. Learners of all ages seek science educational experiences from myriad sources and across multiple platforms – while at home, on weekends and even while on vacation. Unlike in the past, most science learning today is free-choice, driven primarily by an individual’s needs and interests. In fact, research indicates that much of the current disparity in a person’s science literacy derives from inequities in access to quality out-of-classroom learning opportunities
Building on self-determination theory, this study presents a model of intrinsic motivation and engagement as “active ingredients” in garden-based education. The model was used to create reliable and valid measures of key constructs, and to guide the empirical exploration of motivational processes in garden-based learning. Teacher- and student-reports of garden engagement, administered to 310 middle school students, demonstrated multidimensional structures, good measurement properties, convergent validity, and the expected correlations with self-perceptions in the garden, garden learning
Recently, schools nationwide have expressed a renewed interest in school gardens, viewing them as innovative educational tools. Most of the scant studies on these settings investigate the health/nutritional impacts, science learning potential, or emotional dispositions of students. However, few studies examine the shifts in attitudes that occur for students as a result of experiences in school gardens. The purpose of this mixed method study was to examine a school garden program at a K-3 elementary school. Our study sought to demonstrate the value of garden-based learning through a focus on
DATE:
TEAM MEMBERS:
Carley Fisher-MalteseTimothy Zimmerman
Although informal learning environments have been studied extensively, ours is one of the first studies to quantitatively assess the impact of learning in botanical gardens on students' cognitive achievement. We observed a group of 10th graders participating in a one-day educational intervention on climate change implemented in a botanical garden. The students completed multiple-choice questionnaires in a pre-post-retention test design. Comparing the test scores revealed a significant short-term knowledge gain as well as a long-term knowledge gain. Consequently, our results show the potentials
This summative evaluation of the University of Washington Botany Greenhouse K-12 Education Outreach Program analyzed the contents of 468 thank-you notes written by program participants using the National Science Foundation’s Framework for Evaluating Impacts of Informal Science Education Projects. Strong evidence was found for impacts in three STEM learning categories: Awareness, Knowledge or Understanding, Engagement or Interest, and Skills.
Working in collaboration with biomedical researchers from universities in the San Francisco area, across the nation, and abroad, the Exploratorium proposes to develop a high-quality microscopic imaging station for use by museum visitors, students, teachers and Internet visitors. This facility will utilize the highest quality optics and state-of-the-art microscopic techniques including biological staining and sophisticated digital recording. A variety of living specimens fundamental to basic biology, human development, the human genome and health-related research will be displayed. The station will be the lively center of the life sciences' area at the Exploratorium, providing educational content, dramatic imagery and regular demonstrations to reach an audience which ranges from the mildly curious to research scientists. In addition, the Exploratorium will be the first public institution, outside of a few research laboratories, to present live microscopic specimens via video and the Internet in real time. (To date, remote microscopes have generally presented inanimate objects or fixed tissue.) In order to increase student accessibility, subject matter for the imaging station will be integrated into the ongoing middle and high school teacher professional development at the museum. Teachers will be able to use the imaging station to conduct their own experiments, develop classroom explorations, take away images, access the website in their classrooms, or share materials with other teachers.
The Self-Reliance Foundation (SRF) Conociendo Tu Cuerpo (Know Your Body) Hispanic Community Health Sciences Education project is an initiative designed to introduce Hispanic students and families to biomedical science and health education resources, and increase their participation levels in these fields. The educational goals of the project are to: (1) Encourage Hispanic undergraduate students to pursue careers in biomedicine and science through a mentoring program at the university level; (2) Inspire an interest in biomedical science among Hispanic elementary-age students and parents through community outreach activities; (3) Inform Hispanic parents about biomedical science education standards and academic requirements for pursuing biomedical and science related careers; and (4) Inform and inspire Hispanic students and their families about the biomedical sciences and related careers through a series of daily nationally broadcast Spanish-language radio capsules, and a nationally syndicated Spanish newspaper column. Conociendo Tu Cuerpo (Know Your Body) includes several key components: A model, Washington, D.C., area coalition of informal science, health, community, education, and media organizations that will publicize and provide hands-on health science activities at community festivals and other community settings; Hispanic undergraduate student health-science fellows to be trained and provided experience in facilitating health science activities; and nationally broadcast Spanish-language radio capsules that will cover topics in areas of biomedicine, research, education, and health-science careers. Parents and students will be able to access additional information about biomedical science opportunities and Hispanic role models in the biomedical sciences through the project's Conociendo Tu Cuerpo website and the bilingual 800 telephone help line promoted by 147 participating radio stations and 102 newspapers nationwide. The project will be supported at the national level through collaboration with the Hispanic Radio Network and the Pacific Science Center. The Washington, D.C., collaborative will include the Capital Children's Museum, local Spanish language radio stations, area universities, and health and community organizations. Development Associates, the largest American education and evaluation consulting corporation, will evaluate the project.
Adolescents face many conflicting messages and influences related to high-risk behavior. Choices confronting middle school students often have the potential for adverse effects on their overall health and well being. Montshire Museum proposes to develop an educational outreach program to allow students an opportunity to learn about key health issues in a context that is based on high-quality research and offers hands-on inquiry and self-directed investigations. The proposed educational outreach program will serve students in grades 5-8 in rural Vermont and New Hampshire schools. The project team will create four health education modules, each one related to current NIH-supported research by faculty at Dartmouth Medical School (DMS). DMS researchers will collaborate with Montshire Museum's science educators in developing the modules, connecting with students and teachers, and providing support for all aspects of the project. For each module, the project team will support hands-on classroom investigations and independent research using materials, objects and exhibits developed specifically for the program. In addition, professional development institutes for middle school health and science educators will provide science content and instructional strategies needed to successfully implement health science lessons that are aligned with national and state standards for health and science education. The curriculum materials developed for school-based programming also create opportunities for broader public outreach. Montshire's educators will adapt them for special family activities and presentations within the museum setting. The educational curriculum will be designed to provide all participants with information that will assist in making personal health decisions in the subject areas; raise participants' awareness of the ways that culture and media affect their choices; and expose participants to the interesting and relevant research taking place locally, while increasing their understanding of the diversity of health science careers and research processes. A thorough process of formative and summative evaluation will enable the project team to take an iterative approach to curriculum development and to provide the best possible learning experience for participants.
Individuals are at an increased risk to drop out of the STEM pipeline if they are female or Latino, and during certain periods including high school. Families are a potential untapped resource of support for high school students. Based on the expectancy-value model, we examined if a variety of parental behaviors predicted students’ ability self-concepts in and value they placed on biology, chemistry, and physics. Self-report surveys were collected from 988 9th grade Latino boys, Latina girls, Caucasian boys, and Caucasian girls. The findings suggest that, as early as the beginning of high
Summative evaluation plays a critical role in documenting the impacts of informal science education (ISE), potentially contributing to the ISE knowledge base and informing ongoing improvements in practice and decision-making. In response to the growing demand for capacity-building in ISE evaluation, this paper presents a framework for summative evaluation based on an extensive review of literature and research-based refinements. The framework synthesizes key elements of high-quality summative evaluation into three dimensions: (a) Intervention Rationale, (b) Methodological Rigor and
This is a handout from the Science Learning Plus (SL+) Forum held on InformalScience.org from July 6-17, 2015. It lists and describes resources about research and practice collaborations.
In this paper, we discuss our approach to teacher-researcher collaboration and how it is similar and different from other models of teacher collaboration. Our approach to collaboration employed design experimentation (Brown, 1992; Design Based Research Collective, 2003) as a central method since it yields important findings for teachers’ pedagogical practices and contributes to the research literature on teaching and learning. We use three key moments in our collaborative practice to highlight how our work impacted student thinking and learning and involved our own shifting identities as