Skip to main content

Community Repository Search Results

resource project Public Programs
The Thames Science Center collaborative with the resources of the Smithsonian Astrophysical Observatory, Wesleyan University and the National Air and Space Museum will design and develop the project, "Shoot For the Moon." This science education project will capitalize on the attraction, familiarity and proximity of the moon using it as a basis to enrich and supplement the eight and ninth grade physical science curriculum. Ten classroom units, complimentary experiments and demonstrations will be developed. "Moonwatch" software and audio visual materials, including an instructional videotape and a multi.image presentation will accompany the units. Sixteen teachers and museum educators will participate in the training, evaluation and testing as the project is integratedinto the curriculum of twelve schools and four museums. The project is designed to be replicated in schools and science centers in different geographical locations nationally. The site for development and testing will be the Thames Science Center, a regional science museum in eastern Connecticut. The science center offers formal science enrichment programs and tours for students and teacher professional development programs throughout the region.
DATE: -
TEAM MEMBERS: Jane Holdsworth William Gill
resource project Public Programs
The Astronomical Society of the Pacific requests $1,317,701 over three years to implement its California pilot project to six sites around the country. Each site will establish local, self- sustaining coalitions linking science centers, astronomical institutions, school districts, and community groups. These coalitions will, with training and support from the national Project ASTRO staff, identify, link, and support the astronomer/teacher partners in their area to use the excitement of astronomy to improve the teaching and learning of science in elementary and middle school. A second strand of the project will use the Project ASTRO materials and techniques to train astronomers and teachers at national meetings outside the six sites to set up individual ASTRO partnerships on their own. Materials to be produced include a: Project ASTRO Coalition Manual; Training Manual; update to the Resource Notebook for the Teaching of Astronomy. Target audiences are students in grades 4-9.
DATE: -
TEAM MEMBERS: Andrew Fraknoi
resource project Media and Technology
This planning grant is designed to engage urban and rural families in science learning while piloting curriculum development and implementation that incorporates both Native and Western epistemologies. Physical, earth, and space science content is juxtaposed with indigenous culture, stories, language and epistemology in after-school programs and teacher training. Project partners include the Dakota Science Center, Fort Berthold Community College, and Sitting Bull College. The Native American tribes represented in this initiative involve partnerships between the Dakota, Lakota, Nakota, Hidatsa, Mandan, and Arikara. The primary project deliverables include a culturally responsive Beyond Earth Moon Module, teacher training workshops, and a project website. The curriculum module introduces students to the moon's appearance, phases, and positions in the sky using the Night Sky Planetarium Experience Station during programs at the Boys and Girls Club (Ft. Berthold Community College), Night Lights Afterschool program (Sitting Bull Community College), and Valley Middle School (UND and Dakota Science Center). Students also explore core concepts underlying the moon's phases and eclipses using the interactive Nature Experience Station before engaging in the culminating Mission Challenge activity in which they apply their knowledge to problem solving situations and projects. Fifteen pre-service and in-service teachers participate in professional development workshops, while approximately 300 urban and rural Native youth and family members participate in community programs. A mixed-methods evaluation examines the impact of Western and Native science on the learning of youth and families and their understanding of core concepts of science in a culturally responsive environment. The formative evaluation addresses collaboration, development, and implementation of the project using surveys and interviews to document participant progress and obtain input. The summative evaluation examines learning outcomes and partnerships through interviews and observations. Presentations at national conferences, journal publications, and outreach to teachers in the North Dakota Public School System are elements of the project's comprehensive dissemination plan. The project findings may reveal impacts on participants' interest and understanding of connections between Native and Western science, while also assessing the potential for model replication in similar locales around the country.
DATE: -
TEAM MEMBERS: Timothy Young Baker-Big Back Mark Guy
resource project Public Programs
The Lunar and Planetary Institute (LPI) will use $286,915, or 67% of a $430,373 total project budget, over three years to develop "SkyTellers," a space science and astronomy resource for small informal (and formal) learning settings such as planetariums, museum classes, school and community libraries, youth groups and home school settings. LPI educators and science staff, in consultation with a Native American master story teller, evaluation consultants, and an advisory board, will develop 12 SkyTeller topics. Each SkyTeller topic pairs a myth or legend (primarily but not exclusively Native American) with a relevant science story (Sky Story/Science Story) that explains our current understanding of the phenomenon that the ancient tale sought to explain. Ancillary materials (illustrations produced by LPI graphics staff, images from the latest in space science missions and research) will complete the 12 story sets to be used by informal and formal science educators at a variety of venues. Extensive formative and summative evaluation (alpha and beta testing) at multiple test venues is designed to insure high quality informal science education products.
DATE: -
TEAM MEMBERS: Stephen Mackwell Stephanie Shipp Joseph Hahn
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This project is a time sensitive educational response to the 7.8 magnitude earthquake that struck Nepal on April 25, 2015 and was followed by major aftershocks. This project builds on the intense worldwide interest in that disaster by developing and distributing media resources for the public and educators explaining the scientific research into tectonic and fluvial processes of this highly vulnerable region encompassing the Himalayas of Nepal, the Ganges-Brahmaputra River Delta of Bangladesh and India, and the mountains of northeastern India. Project deliverables include PBS NewsHour broadcasts and online stories, short videos for classroom use, 3D/2D videos for public screenings in museums, Earth Magazine blogs and articles, and DVDs. Making new research understandable and accessible to the public is an important activity of the U.S. research enterprise. NSF is making a substantial investment in earth sciences research to increase knowledge of the conditions and processes that periodically cause earthquakes, landslides, and flooding. This education project leverages those investments and the public interest in the recent Nepal earthquake with a major public engagement opportunity that has the potential for reaching millions of students, teachers, and the public both in the U.S. and in other vulnerable regions.
DATE: -
TEAM MEMBERS: Doug Prose Diane LaMacchia
resource project Media and Technology
Capitalizing on the appeal of the PBS KIDS project PLUM LANDING, PLUM RX will research and develop resources to help families and educators infuse environmental science learning into outdoor prescription programs, while ensuring they are appropriate for broad use in other informal settings. The growing outdoor prescription movement is designed to increase the amount of time children spend outside in nature. Programs are structured so that health care providers write "prescriptions" for children to engage in outdoor activity, and informal educators "fill" these prescriptions by facilitating youth and family participation in outdoor activities. There is preliminary evidence that these programs are getting kids outside, but best practices for transitioning "get outside" programs to become "get outside and learn about the environment" programs remain unidentified. PLUM RX is designed to build this knowledge and create resources that are responsive to the needs of both English and Spanish-speaking urban families. The project will work with informal educators and families through multiple cycles of implementation and revision, testing and refining PLUM LANDING resources (animations, videos, games, hands-on science activities, and support materials for informal educators and families), with the goal of designing an effective and accessible PLUM RX Toolkit for national dissemination. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM (Science, Technology, Engineering, Mathematics) learning in informal environments. The proposed research is designed to ensure that the PLUM RX Toolkit--the resources and support materials--will meet the needs of educators working in non-specialized urban settings. Education Development Center (EDC) and WGBH developers will collaborate on design-based research at three urban outdoor prescription programs serving low-income families: Philadelphia Nature Rx in Philadelphia, PA; Outdoors Rx in Boston, MA; and Portland Rx Play in Portland, OR. Moving through cycles of implementation, observation, analysis, and revision, the research team will work closely with educators, families, and developers to determine how the programmatic and structural features of the learning environment, the actions of the educators, and the intervention itself can most effectively support children and families' outdoor exploration in urban contexts. Toolkit materials will include resources for kids and families (including Spanish-speaking families) and informal educators (including those who work with families and directly with children in out-of-school settings). Directors from the three urban outdoor prescription programs will contribute to every phase of the research process, including recruiting families and youth who will participate in a weekly sequence of activities. The overarching focus of the analysis process will be on systematically describing the interaction between two dimensions of implementation: What happened during pilot implementations, and the factors that constrained or supported implementation as planned; and the quality of what happened, which will be defined with reference to the intended impacts. EDC will use a structured descriptive coding process to analyze the qualitative evidence gathered through interviews and observations during design and testing periods. Products of the research activities will include: a series of formative memos to the development team; a report mapping changes made to PLUM RX Toolkit materials in response to formative input and the intended impact of those changes; and findings regarding commonalities and differences across sites in the interaction of local contextual factors and the implementation success of the PLUM RX Toolkit. Concord Evaluation Group (CEG) will provide independent, summative evaluation of the project. Through this process, PLUM RX will build broader knowledge about how to design educational resources, geared for both families and informal educators, which respond to the unique challenges of exploring environmental science in urban environments.
DATE: -
TEAM MEMBERS: Marisa Wolsky Mary Haggerty
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This research project leverages ongoing longitudinal research to investigate whether, and if so how, youth from ages 10 to 15 in a diverse, under-resourced urban community become interested and engaged in STEM. The project addresses a global issue; fewer youth choose to major in scientific fields or take science coursework at high school or university levels. These declining numbers result in fewer STEM professionals and fewer scientifically literate citizens who are able to function successfully in an increasingly scientific and technological society. These declines are observed for youth as a whole, but are most pronounced for girls and particular non-white ethnic minorities. Data collected from youth in this community of study, including non-white ethnic minorities, mirrors this decline. NSF funding will support a five-year systematic and systemic process in which project researchers work collaboratively with existing informal and formal educational partners (e.g., museums, libraries, afterschool providers, schools) to develop sets of customized, connected, and coordinated learning interventions, in and out of school, for youth with different backgrounds, needs, and interests, all with the goal of averting or dampening this decline of STEM interest and participation during early adolescence. In addition to new research and community STEM networks, this project will result in a Community Toolkit that includes research instruments and documentation of network-building strategies for use by other researchers and practitioners nationally and internationally. This mixed methods exploratory study has two distinct but interrelated populations - youth and educators from across informal and formal institutions. To develop a clearer understanding of the factors that influence youths' STEM interest development over time, particularly among three youth STEM Interest Profiles identified in a secondary analysis (1-Dislike Math, 2-Like all STEM, 3-Dislike all STEM), the design combines surveys with in-depth interviews and observations. To study educators and institutions, researchers will combine interviews, focus groups, and observations to better understand factors that influence community-wide, data-driven approaches to supporting youth interest development. Research will be conducted in three phases with the goal of community-level change in youth STEM interest and participation. In Phase 1 (Years 1 & 2) four educational partners will develop interventions for a 6th and 7th grade youth cohort that will be iteratively refined through a design-based approach. Educational partners and researchers will meet to review and discuss interest and participation data and use these data to select content, as well as plan activities and strategies within their programs (using a simplified form of conjecture mapping). By Phase 2 (Years 3 & 4) four additional partners will be included, more closely modeling the complex system of the community. With support from researchers support and existing partners, new educational partners will similarly review and discuss data, using these to select content, as well as plan activities consistent with program goals and strategies. Additional interventions will be implemented by the new partners and further assessed and refined with a new 6th and 7th grade cohort, along with the existing interventions of the first four partners. In Phase 3 (Year 5) data will be collected on pre-post community-level changes in STEM interest and participation and the perceived effectiveness of this approach for youth. These data will inform future studies.
DATE: -
resource evaluation Public Programs
The fifth annual Invent It. Build It. event, sponsored by the Society of Women Engineers (SWE), Girl Scouts of the USA, WGBH’s Design Squad Global, the ExxonMobil Foundation, and Techbridge was held at the SWE annual conference in Los Angeles, CA. Participants included a record-breaking 619 middle school girls, plus 300 of their parents/guardians and middle school educators. More than 200 SWE members volunteered at the event to facilitate the activities, act as role models, and work closely with the middle school girls throughout the day. Thirty-two exhibitors provided information about camps
DATE:
TEAM MEMBERS: Concord Evaluation Group Christine Paulsen
resource project Public Programs
The overall goal of the current proposal is to adapt the interdisciplinary research-based curriculum created at the School for Science and Math at Vanderbilt (SSMV) for implementation of a four-year program in three Metropolitan Nashville Public School (MNPS) high schools. The specific aims of the proposal are to adapt the on-campus (at Vanderbilt) model for implementation in three public high schools with different academic profiles (SSM Academies); to define the variables and features required to sustain the program and to replicate the model in any high school setting; and to define a strategy for disseminating the model to additional schools. Students entering 9th grade in a school in which an SSM Academy has been implemented will be encouraged to apply. Those who are accepted into the program will spend three hours every other day in two courses based on the adapted curriculum. As with the SSMV, rising seniors will have opportunities to enter Vanderbilt laboratories for summer research internships. Teachers from the high school will work with Center for Science Outreach scientists to adapt the SSMV curriculum for implementation. Ongoing, year-long teacher professional development will be conducted to ensure that the curriculum is dynamic and the teachers are well-prepared to engage and guide the students in the curriculum. The anticipated outcomes include enhanced student achievement as measured by GPA, and scores on ACT science reasoning and end of course tests; increased SSM student interest in careers in science; increased district-wide enrollment in SSM programs; increased graduation rates and postsecondary education enrollment by SSM students; development of unique curricular science units that can be adapted for a novel four-year interdisciplinary research- based curriculum; development of a sustainable model built on effective features of each SSM that can be exported to other high schools within and outside Nashville; enhanced community and family involvement in the SSM programs and school community in general; a strengthened partnership between Vanderbilt and MNPS that will serve as a national model of a successful university-K-12 collaboration to enhance science teaching and learning.
DATE: -
TEAM MEMBERS: Virginia Shepherd
resource project Media and Technology
Through "Addressing the Science of Really Gross Things: Engaging Young Learners in Biomedical Science Through a Fulldome Planetarium Show and Supporting Curricula," Morehead Planetarium and Science Center at the University of North Carolina at Chapel Hill, in close collaboration with NIH-funded researchers at the UNC and a leading children's book author, will develop an informal science education media project and a suite of hands-on, inquiry-based curricula based on the media project for use in science centers, museums and schools. This project will build the pipeline of future researchers and create awareness of NIH-funded research by generating interest and excitement among children age 9-13 in the health sciences and related careers and building their science content knowledge. To achieve the objective, the investigators will develop a fulldome planetarium show; create correlating curricula for summer camps, afterschool programs, scout programs, science center field trips, science clubs and schools; and produce a DVD highlighting careers in the health sciences. In addition, the project will use several methods to target populations traditionally underrepresented in the biomedical fields, including featuring professionals from underrepresented populations in the multimedia and curricula products, making outreach visits to counties with large populations traditionally underrepresented in health science research careers, and producing a Spanish-language version of the products. The use of a known brand, "Grossology," is an innovative way to connect to children in the target age range and to encourage the informal science education community to embrace health-science content in their fulldome theaters. In addition, the project's hub-and-spoke approach further encourages adoption of this programming by providing informal science venues with both an engaging experience (hub) and the supporting curricula (the spokes) that is necessary to extend the show's potential for having significant educational impact. A strong project team maximizes the project's likelihood for success. The team includes fulldome producers and educators from Morehead and NIH-funded researchers with expertise in appropriate science content areas. In addition, the investigators have created a network of consultants, advisory board members and evaluators that will create feedback loops designed to ensure high-quality, scientifically-accurate, educationally-effective products. The investigators will use a combination of free and revenue-based dissemination strategies to ensure that the products of this award are broadly distributed. These strategies hold significant promise for creating broad use of this project's products in the nation's science centers, museums and classrooms.
DATE: -
TEAM MEMBERS: Denise Young
resource project Media and Technology
This Phase I SEPA proposal supports a consortium of science and education partners that will develop System Dynamics (SD) computer models to illustrate basic health science concepts. The consortium includes Oregon Health Sciences University (OHSU), Portland Public Schools (PPS), Saturday Academy, and the Portland VA Medical Center. SD is a computer modeling technique in which diagrams illustrate system structure and simulations illustrate system behavior. Desktop computers and commercial software packages allow SD to be applied with considerable success in K-12 education. NSF grants to Portland Public Schools have trained over 225 high school teachers in Portland and surrounding areas. Two magnet programs have been established with an emphasis on systems and at least five other schools offer significant systems curriculum. Major components of this project include (1) Annual summer research internships at OHSU for high school teachers and high school students, (2) Development of SD models relevant to each research project, (3) Ongoing interactions between high school science programs and OHSU research laboratories, (4) Development of curriculum materials to augment the use of the SD model in the high school classroom or laboratory setting, and (5) Development of video materials to support the classroom teacher. Content will focus on four fundamental models: linear input/exponential output, bi-molecular binding (association/dissociation), population dynamics, and homeostasis. Each of these models is very rich and may be extended to a broad variety of research problems. In addition these models may be combined, for example to illustrate the effect of drugs (binding model) on blood pressure (homeostasis model). System Dynamics is an exemplary tool for the development of materials consistent with National Science Education Standards. SD was specifically developed to emphasize interactions among system structure, organization, and behavior. Students use these material as part of inquiry-based science programs in which the teacher serves as a guide and facilitator rather than the primary source of all content information; technical writing by students is also encouraged. Finally, these SD materials will provide a coherent body of work to guide the ongoing professional development of the classroom science teacher.
DATE: -
TEAM MEMBERS: Edward Gallaher
resource project Public Programs
The Tech Museum of Innovation and Stanford University School of Medicine Department of Genetics have established longterm partnership to enable the public to draw connections between modern genetics research and choices they face about their health. Together we will develop, produce, evaluate, and disseminate Life's New Frontier, a dynamic exhibition which will inform the public about the goals and methods of modern genetics. Interactive permanent exhibits and guided learning centers, staffed jointly by museum educators and by working scientists (predominantly Stanford graduate students and postdoctoral fellows), will take the public into the minds and laboratories of scientists who are revolutionizing biomedical science. The exhibition and associated public and school programs will emphasize the emerging discipline of bioinformatics, which is fundamental to the Human Genome Project, gene-based diagnosis, rational drug design, and treatment of disease. Life's New Frontier will open in the summer of 2003 to reach an estimated 1.5 million diverse people annually through museum and online visitation. It will set a new standard for the treatment of cutting-edge science in exhibitions by establishing an infrastructure that permits rapid changes to exhibit content, and creating opportunities for visitors to receive personalized science and health updates after their visit. The exhibition also will serve as a platform to foster continuing personal interaction among middle and high school students, Stanford faculty and students, and the general public. The Tech/Stanford partnership will be maintained through staff liaison positions at each partner institution and will be evaluated to assess its effectiveness. We hope to extend this model to other departments at the Stanford University School of Medicine, and to disseminate it as a model for other science center/university partnerships in biomedical sciences. We anticipate significant outcomes of this partnership: the pblic will be better able to apply the ideas of modern genetics to decisions about their health; and a broad range of students from diverse backgrounds will be inspired to pursue biomedical education and research.
DATE: -
TEAM MEMBERS: Doris Chin Barry Starr