The scientific community is challenged by the need to reach out to students who have traditionally not been attracted to engineering and the sciences. This project would provide a link between the University of Michigan and the teachers and students of secondary education in the State of Michigan with an initial emphasis on southeast Michigan, through the creation of a range of computer services which will provide interactive access to current weather and climate change information. Taking advantage of a unique computer network capacity within the State of Michigan named MichNet which provides local phone ports in virtually every major city in the state, and the resources available to the university community via the University Corporation for Atmospheric Research (UCAR) UNIDATA program, this project would provide secondary schools with access to a state-of-the-art interactive weather information system. The real-time data available via the system, supplemented by interactive computer modules designed in collaboration with earth science teachers, will provide animated background information on a range of climate and weather related topics. While the principal objective of this project will be to provide educationally stimulating interactive computer systems and electronic weather and climate modules for application in inner city Detroit and its environs, the unique nature of the available computer networking will allow virtually every school system in the state to have access. Subsequently successful completion of this project could eventually make the same systems available to other cities and states.
Arizona State University will develop new features for its SciStarter website that will expand participation in citizen science and provide rich data for researching the nature of and impacts of citizen science participation. SciStarter is a popular online citizen science hotspot featuring more than 850 searchable citizen science projects, added by researchers and project owners, and serving over 35,000 citizen scientists. The project will develop new features to add to the current website that will enable participants to explore hundreds of citizen science projects and select projects of most interest to them, track their participation, and connect to people and projects they are interested in. The expanded website will also provide rich data that will help citizen science projects evaluate their programs and that will rich data for researchers to investigate the nature of citizen science participation. The website will be widely accessible to the public through partnerships with Discover Magazine, the Citizen Science Association, and other partners. The SciStarter website will develop additional features to expand citizen science participation and to research the nature and impacts of participation. The expanded features will include: (1) an integrated registration for participants to more easily engage in one or multiple citizen science projects, across platforms; (2) GIS implementation for project owners to define the geographic boundaries of projects so participants can find them more easily; and (3) an online, personal dashboard for participants to track their projects, participation, and contributions to science, share and save data, record interests in projects, create profiles, and find people and projects of interest to them. These new features will create opportunities for future research concerning: (1) understanding how citizen scientists use the site and how it responds to their needs and interests, and (2) understanding why, how, and with what impacts citizen scientists participate in research. The project will support the overall strategy of the Advancing Informal STEM Learning Program to enhance learning in informal environments through the funding of innovative resources through a variety of settings. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This education project is a time sensitive opportunity related to the March 9, 2016 Total Solar Eclipse occurring in a remote part of the world located in Waleia in the Federated States of Micronesia, a U.S. affiliated Pacific Island nation. The path of totality is only 100 miles wide and passes through only a few Pacific Island nations ending in Hawaii. This project uses this unique phenomenon to educate a large US and international audience about solar science using multi-platforms with integrated video, social media, and public programs. Project deliverables include the production of a broadcast of the eclipse live from Waleia in the Federated States of Micronesia on March 9, 2016 making it accessible to hundreds of countries and millions of people around the world via satellite and live streaming on the Internet. Additional deliverables include on-site educational programs at science centers and planetariums as well as media resources for long-term use. These resources will enhance the interest and preparedness for additional public engagement when the 2017 eclipse occurs in the U.S. Making new research understandable and accessible to the public is an important activity of the U.S. research enterprise. NSF is making a substantial investment in solar physics research by funding the construction of the world's largest solar telescope, the Daniel K. Inouye Solar Telescope which is slated to begin operations in late 2019 and operated by the National Solar Observatory. This new facility will revolutionize researchers' capability to study the Sun and its magnetic fields. This education project leverages that investment with a major public engagement opportunity that has the potential for reaching millions of students, teachers, and the public both in the U.S. and worldwide through the Internet.
DATE:
-
TEAM MEMBERS:
ExploratoriumRobert SemperNicole MinorRobyn Higdon
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This project is a time sensitive educational response to the 7.8 magnitude earthquake that struck Nepal on April 25, 2015 and was followed by major aftershocks. This project builds on the intense worldwide interest in that disaster by developing and distributing media resources for the public and educators explaining the scientific research into tectonic and fluvial processes of this highly vulnerable region encompassing the Himalayas of Nepal, the Ganges-Brahmaputra River Delta of Bangladesh and India, and the mountains of northeastern India. Project deliverables include PBS NewsHour broadcasts and online stories, short videos for classroom use, 3D/2D videos for public screenings in museums, Earth Magazine blogs and articles, and DVDs. Making new research understandable and accessible to the public is an important activity of the U.S. research enterprise. NSF is making a substantial investment in earth sciences research to increase knowledge of the conditions and processes that periodically cause earthquakes, landslides, and flooding. This education project leverages those investments and the public interest in the recent Nepal earthquake with a major public engagement opportunity that has the potential for reaching millions of students, teachers, and the public both in the U.S. and in other vulnerable regions.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This project will develop and study a cyber-enhanced informal learning environment to improve observational practices and classification skills among citizen scientists. The project will focus on the taxonomic identification skills needed by volunteers to provide high-quality data for water quality monitoring of local streams, lakes, estuaries, wetlands, and ground water resources. To make the task of identifying freshwater insects easier and more engaging, the project will develop an innovative educational resource, the Macroinvertebrate Identification Training Environment, that will use zoomable high-resolution images, interactive media, and annotations of diagnostic features to improve perceptual skills. The goal is to increase the confidence and accuracy of volunteers engaged in identification tasks, while also increasing the reliability and quality of the data they are generating for purposes of scientific research and conservation efforts. This interdisciplinary design research and development project will use networked gigapixel image technology to create a visual environment where users can move seamlessly from full panoramic views of macroinvertebrates to extreme close-ups, with embedded text, images, graphics, audio, and video at various locations and zoom levels. This system will be developed in concert with a cognitive apprenticeship training model designed through a series of design studies. The design studies will be conducted over a two-year period and will include examination of the distinguishing features of various biomonitoring programs, reviews of existing training materials and strategies, expert performance analysis of professional entomologists, and development of user interface features. Project developers will collaborate with five regional volunteer biomonitoring organizations to engage a diverse set of volunteers in the design process, including rural populations, older adults, urban youth, and the trainers who support them. The project work will consist of four integrated strands of activity: design-based learning research, creation of an entomological teaching collection, cyberplatform development, and the external evaluation of the training system. The resulting Macroinvertebrate Identification Training Environment will be evaluated in terms of its impacts on volunteer accuracy, confidence, and engagement in taxonomic classification activities related to macroinvertebrates. The impacts of the learning system on trainers and volunteer biomonitoring organizations will also be examined.
The range of contemporary "emerging" technologies with far-reaching implications for society (economic, social, ethical, etc.) is vast, encompassing such areas as bioengineering, robotics and artificial intelligence, genetics, neuro and cognitive sciences, and synthetic biology. The pace of development of these technologies is in full gear, where the need for public understanding, engagement and active participation in decision-making is great. The primary goal of this four-year project is to create, distribute and study a set of three integrated activities that involve current and enduring science-in-society themes, building on these themes as first presented in Mary Shelley's novel, Frankenstein, which will be celebrating in 2018 the 200th anniversary of its publication in 1818. The three public deliverables are: 1) an online digital museum with active co-creation and curation of its content by the public; 2) activities kits for table-top programming; and 3) a set of Making activities. The project will also produce professional development deliverables: workshops and associated materials to increase practitioners' capacity to engage multiple and diverse publics in science-in-society issues. The initiative is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project by Arizona State University and their museum and library collaborators around the country will examine the hypothesis that exposing publics to opportunities for interactive, creative, and extensive engagement within an integrated transmedia environment will foster their interest in science, technology, engineering and mathematics (STEM), develop their 21st century skills with digital tools, and increase their understanding, ability, and feelings of efficacy around issues in science-in-society. These three distinct yet interlocking modes of interaction provide opportunities for qualitative and quantitative, mixed-methods research on the potential of transmedia environments to increase the ability of publics to work individually and collectively to become interested in and involved with science-in-society issues.
A recent report by the Association for Computing Machinery estimates that by decade's end, half of all STEM jobs in the United States will be in computing. Yet, the participation of women and underrepresented groups in post-secondary computer science programs remains discouragingly and persistently low. One of the most important findings from research in computer science education is the degree to which informal experiences with computers (at many ages and in many settings) shape young people's trajectories through high school and into undergraduate degree programs. Just as early language and mathematics literacy begins at home and is reinforced throughout childhood through a variety of experiences both in school and out, for reasons of diversity and competency, formal experiences with computational literacy alone are insufficient for developing the next generation of scientists, engineers, and citizens. Thus, this CAREER program of research seeks to contribute to a conceptual and design framework to rethink computational literacy in informal environments in an effort to engage a broad and diverse audience. It builds on the concept of cultural forms to understand existing computational literacy practices across a variety of learning settings and to contribute innovative technology designs. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds new approaches to and evidence-based understanding of the design and development of STEM learning in these settings. This CAREER program of research seeks to understand the role of cultural forms in informal computational learning experiences and to develop a theoretically grounded approach for designing such experiences for youth. This work starts from the premise that new forms of computational literacy will be born from existing cultural forms of literacy and numeracy (i.e., for mathematical literacy there are forms like counting songs -- "10 little ducks went out to play"). Many of these forms play out in homes between parents and children, in schools between teachers and students, and in all sorts of other place between friends and siblings. This program of study is a three-phased design and development effort focused on key research questions that include understanding (1) how cultural forms can help shape audience experiences in informal learning environments; (2) how different cultural forms interact with youth's identity-related needs and motivations; and (3) how new types of computational literacy experiences based on these forms can be created. Each phase includes inductive research that attempts to understand computational literacy as it exists in the world and a design phase guided by concrete learning objectives that address specific aspects of computational literacy. Data collection strategies will include naturalist observation, semi-structured, and in-depth interviews, and learning assessments; outcome measures will center on voluntary engagement, motivation, and persistence around the learning experiences. The contexts for research and design will be museums, homes, and afterschool programs. This research builds on a decade of experience by the PI in designing and studying computational literacy experiences across a range of learning settings including museums, homes, out-of-school programs, and classrooms. Engaging a broad and diverse audience in the future of STEM computing fields is an urgent priority of the US education system, both in schools and beyond. This project would complement substantial existing efforts to promote in-school computational literacy and, if successful, help bring about a more representative, computationally empowered citizenry. The integrated education plan supports the training and mentoring of graduate and undergraduate students in emerging research methods at the intersection of the learning sciences, computer science, and human-computer interaction. This work will also develop publically available learning experiences potentially impacting thousands of youth. These experiences will be available in museums, on the Web, and through App stores.
Goals: 1) Increase the number of Alaskans from educationally and/or economically disadvantaged backgrounds, particularly Alaska Natives, who pursue careers in health sciences and health professions and 2) Inform the Alaskan public about health science research and the clinical trial process so that they are better equipped to make healthier lifestyle choices and better understand the aims and benefits of clinical research. Objectives: 1) Pre-med Summer Enrichment program (U-DOC) at UAA (pipeline into college), 2) Statewide Alaska Student Scientist Corps for U-DOC, 3) students (pipeline into college), 4) Facility-based Student Science Guide program at Imaginarium Science Discovery Center, 5) Job Shadowing/Mentorship Program for U-DOC students and biomedical researchers, 6) Research-based and student-led exhibit, demonstration, and multi-media presentations, 7) Professional Development for educators, 8) North Star Website.
The overall objective of this planning project was to examine the potential effectiveness of the Signing Science Pictionary (SSP) in increasing the ability of parents and their deaf and hard of hearing children to engage in informal science learning. To achieve this objective, research and development included four goals. 1) Design several SSP-based activities to help family members engage in informal science learning. 2) Examine the potential effectiveness of the SSP in increasing family member’s signed science vocabulary. 3) Find out about the potential effectiveness of the SSP in
With this 3-year project, TERC and the Museum of Science (MoS) Boston are studying how family and school visitors integrate iPod Touch versions of the Signing Science Pictionary (SSP), Signing Science Dictionary (SSD), and Signing Math Dictionary (SMD) into their museum experience and the impact of dictionary use. This report focuses on school visitors. Each dictionary includes more than 700 standards-based science or mathematics terms. The SSP (funded in part by grants from the Shapiro Family Foundation and the U. S. Department of Education, Grant #H327A080040) is intended for children ages 5
Recent biomedical research has transformed scientific understanding of human biology. But many of these advances haven’t filtered into public awareness, hindering our ability to make good health-related decisions. A new educational program ‒ Biology of Human ‒ will help the public, particularly young people, better understand advances in biomedical research. This innovative, learning research-based science education program is strategically designed to increase awareness of and understanding about new biomedical research developments pertaining to human biology. Biology of Human will provide a sophisticated science education outreach package for students aged 11 to 15 and adults, including parents and educators. The project's goal is to leverage the latest biomedical information and innovations, a dynamic suite of educational and dissemination strategies, and research-driven approach grounded in sociology to broadly educate youth and adults about human biology. A team led by the University of Nebraska State Museum, the Department of Sociology at the University of Nebraska-Lincoln, and the NIH/NCRR-funded Nebraska Center for Virology (a Center of Biomedical Research Excellence) will work with science writers, kids, and educators to complete three specific aims: 1) stimulate interest in and understanding of biomedical research's importance to diverse individuals' health, communities, and environments; 2) establish partnerships among science educators, biomedical researchers, science journalists, and others to create dynamic educational resources focused on biomedical research developments and human biology; and 3) increase youths' interest in biomedical science. Biology of Human will provide adults and youth with several simultaneous, complementary options for learning about how biomedical research has helped us understand human biology including essays, books and blogs; entertaining and scientifically accurate mobile and tablet apps; activities and graphic stories; and a Web site that complements and supports the project's professional development programs. More than 175,000 youth and adults are expected to be directly impacted through this effort.
Intuitive Company researchers and evaluators assessed four components of the DUST Alternate Reality Game for potential reusability: 1) QTE Environment during Collapse, 2) Brain/Health Scanner Mobile App, 3) Microbe Web App, 4) Star Map Web App. We assessed reusability based on five variables (facilitation, user identification, digital access, player type, and timing) along a continuum of informal to formal learning contexts, from museums to after school programs to formal classroom settings. Our assessment revealed that the: 1. QTE Environment during the Collapse is most replayable in its
DATE:
TEAM MEMBERS:
Brigham Young University, University of MarylandJes KoepflerNidhi JalwalVictor Yocco