This report presents findings from a joint study carried out by the Museum of Science, Boston Research and Evaluation Department (MOS) and Art Beyond Sight (ABS, formerly Art Education for the Blind) with museum visitors who are blind or have low vision. The purpose of this study was to gather information that can inform the development of pilot museum programs that meet the needs and interests of visitors who are blind or have low vision and to provide professional development for museum professionals. Focus groups were used as the primary data collection method, as they enable idea sharing
The broad purpose of this project is to contribute to capacity-building efforts—to strengthen the evaluation of programs and learning experiences in informal science education (ISE). We focus on improving the quality of summative evaluations, which have been called upon to inform decision-making and practice, contribute knowledge to the field, and help make the case for the value of informal learning. We previously developed a framework that synthesizes key elements of a high-quality summative evaluation. The framework has three dimensions: (a) examine the underlying rationale of the program, exhibition, experience, or intervention being evaluated; (b) balance methodological rigor with sensitivity to the informal context; and (c) prioritize uses of the evaluation by addressing stakeholders’ needs. Evaluators may draw on all three dimensions to provide summary judgments on the value of what was evaluated. We extend our work in two ways: (1) Examine how the framework could be used as a guiding lens for planning or conducting future or current summative evaluations. We will work with partners in informal science institutions to support and document their evaluation activities along the dimensions of evaluation quality, with the intent of improving the framework and creating concrete exemplars of its application in practice. (2) Conceptualize alternative models for enhancing professional training in ISE evaluation. We will research current programs and practices for building technical evaluation capacity, looking for promising and innovative approaches that include apprenticeship or “hands-on” experiences. This 18-month project (January 2015 through June 2016) is funded by the Gordon and Betty Moore Foundation.
The Milwaukee Public Museum will develop Adventures in Science: An Interactive Exhibit Gallery. This will be a 7250 sq. ft. interactive exhibit with associated public programs and materials that link the exhibit with formal education. The goal of Adventures in Science is to promote understanding of biological diversity, the forces that have change it over time, and how scientists study and affect change. The exhibit will consist of three areas. "Our Ever-Changing World" will feature "dual scene" habitat dioramas that will convey at-a-glance how environments change over time. "The Natural History Museum" will be a reconstruction of a museum laboratory and collections area to protray behind-the-scenes scientific and curatorial activities that further the study of biological diversity, ecology and systematics. An "Exploration Center: will bridge these two areas and will be designed to accommodate live presentations, group activities and additional multimedia stations for Internet and intranet access. Using interactive devices, visitors will be encouraged to make hypothesis, examine evidence, compare specimens, construction histories of biological and geological changes, and develop conclusions about the science behind biodiversity and extinction issues. Visitors should also come away with an increased understanding of the role of systematic collections in understanding biological diversity. Information on MPM research programs will be highlighted in "The Natural History Museum" section and will be updated frequently. Annual Teacher Training Institutes for pre-service and in-service teachers will present strategies for using the gallery's multimedia stations, lab areas, and Web site links. Special attention will be given to reaching new audiences including those in the inner city and people with disabilities.
DATE:
-
TEAM MEMBERS:
Allen YoungJames KellyPeter SheehanSusan-Sullivan BorkinRolf JohnsonMary Korenic
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE:
-
TEAM MEMBERS:
Efi Foufoula-GeorgiouChristopher PaolaGary Parker
A range of sources support science learning, including the formal education system, libraries, museums, nature and Science Centers, aquariums and zoos, botanical gardens and arboretums, television programs, film and video, newspapers, radio, books and magazines, the Internet, community and health organizations, environmental organizations, and conversations with friends and family. This study examined the impact of one single part of this infrastructure, a Science Center. This study asked two questions. First, who in Los Angeles (L.A.) has visited the California Science Center and what factors
Historically, most of the focus of science education has been on pre-college and college level schooling. Although some of the public's interest and knowledge about science is unquestionably shaped by compulsory schooling, given that the average adult spends only a fraction of their life participating in some kind of formal schooling, we argue that the contribution of school-based science learning to the long-term public understanding of science is limited, particularly for the majority of Americans who do not go on to post-secondary schooling. This article shows that the majority of the
Most free-choice science learning institutions, in particular science centers, zoos, aquariums, and natural history museums, define themselves as educational institutions. However, to what extent, and for which visitors, do these free-choice learning settings accomplish their educational mission? Answering this question has proven challenging, in large part because of the inherent variability of visitors to such settings. We hypothesize that the challenges of measuring free-choice science learning might be diminished if it were possible to pool populations during analysis in ways that reduced
This study at the National Aquarium in Baltimore (NAIB) was conducted to assess four key aspects of the visitor experience: (1) incoming conservation knowledge, attitudes, and behavior of NAIB visitors; (2) patterns of use and interaction with exhibition components throughout the NAIB; (3) exiting conservation knowledge, attitudes, and behaviors of visitors; and (4) over time, how the NAIB experience altered or affected individuals' conservation knowledge, attitudes, and behaviors. Three hundred six visitors participated in the study, which was conducted from March through July, 1999. The
DATE:
TEAM MEMBERS:
Institute for Learning InnovationJohn H FalkLeslie AdelmanSylvia James
Six museum education and learning researchers discuss the need to study how people learn and behave in museums and what kind of current research studies should be undertaken. Mary Ellen Munley, in "Back to the Future: A Call for Coordinated Research Programs in Museums," describes the differences between the terms "evaluation,""audience research," and "education research" and recommends establishing major systematic programs of museum-based research that are similar to ones initiated in the 1920s and 1930s. In "Educational Exhibitions: Some Areas for Controlled Research," C. G. Screven
Most people visit a science center in order to satisfy specific leisure-related needs; needs which may or may not actually include science learning. Falk proposed that an individual's identity-related motivations provide a useful lens through which to understand adult free-choice science learning in leisure settings. Over a 3-year period the authors collected in-depth data on a random sample of visitors to a large recently opened, hands-on, interactive science center; collecting information on why people visited, what they did within the science center, what they knew about the subject
Considerable time and effort have been invested in understanding the motivations of museum visitors. Many investigators have sought to describe why people visit museums, resulting in a range of descriptive categorizations. Recently, investigators have begun to document the connections between visitors' entering motivations and their exiting learning. Doering and Pekarik have proposed starting with the idea that visitors are likely to enter a museum with an “entry narrative” (1996; see also Pekarik, Doering and Karns 1999). Doering and Pekarik argue that these entry narratives are likely to be
Falk and Dierking’s Contextual Model of Learning was used as a theoretical construct for investigating learning within a free-choice setting. A review of previous research identified key variables fundamental to free-choice science learning. The study sought to answer two questions: (1) How do specific independent variables individually contribute to learning outcomes when not studied in isolation? and (2) Does the Contextual Model of Learning provide a useful framework for understanding learning from museums? A repeated measure design including interviews and observational and behavioral