These 16 articles offer a gentle introduction to nano science and technology, and can be used as marketing pieces for discussing nano with the press during NanoDays or other nano event promotion.
This guide to partnering with researchers and scientists is designed for the U.S. science museum community, and was produced by the Strategic Projects Group at the Museum of Science, Boston, for the NISE Network. Note: Beta Site, under development
Drawing upon critically oriented studies of science literacy and environmental justice, we posit a framework for activism in science education. To make our case, we share a set of narratives on how the River City Youth Club acquired a new green roof. Using these narratives we argue that the ways in which youth describe their accomplishments with respect to the roof reflects a range of subject positions that they carve out and take up over time. These subject positions reveal how activism is a generative process linked to “knowing” and “being” in ways that juxtapose everyday practices with
This article investigates the development of agency in science among low-income urban youth aged 10 to 14 as they participated in a voluntary year-round program on green energy technologies conducted at a local community club in a midwestern city. Focusing on how youth engaged a summer unit on understanding and modeling the relationship between energy use and the health of the urban environment, we use ethnographic data to discuss how the youth asserted themselves as community science experts in ways that took up and broke down the contradictory roles of being a producer and a critic of
Investigating Green Energy Technologies in the City (GET City) is a youth-based project designed to target underserved middle school students and introduce concepts in energy sustainability and environmental health. Partners include Michigan State University's College of Education and College of Engineering, Lansing Boys and Girls Club, Lansing Board of Water and Light, and Urban Options, a non-profit energy and environmental agency. Participants learn to use IT tools (GIS software, databases, and communication tools) and gain IT workforce skills, research experiences, science knowledge, and inquiry skills. Project components include bi-weekly afterschool sessions (18 weeks), a 3-week summer program with field-based design experiences, community energy events, parental involvement activities, career field trips, and a project website. Youth will also participate in an annual community fair and conduct energy audits. Topics covered include brownouts, environmental health, alternative energy sources, and green energy technologies. Youth will receive ongoing support from energy mentors and gain leadership experience. The project will result in the development of a curriculum that includes IT-based investigations with a focus on core energy concepts. GET City also includes a research component that examines youth identity development in science, engineering, and IT in an attempt to understand how the program supports participation in an IT community of practice. The research, in conjunction with the comprehensive evaluation, will contribute to the field by providing insight into how the program design fosters youth engagement and learning in science, engineering, and IT. Seventy youth will receive 280 contact hours over two years of participation.
The overall objective of this planning project was to examine the potential effectiveness of the Signing Science Pictionary (SSP) in increasing the ability of parents and their deaf and hard of hearing children to engage in informal science learning. To achieve this objective, research and development included four goals. 1) Design several SSP-based activities to help family members engage in informal science learning. 2) Examine the potential effectiveness of the SSP in increasing family member’s signed science vocabulary. 3) Find out about the potential effectiveness of the SSP in
The Dimensions of Success observation tool, or DoS, pinpoints twelve indicators of STEM program quality in out-of-school time. It was developed and studied with funding from the National Science Foundation (NSF) by the Program in Education, Afterschool and Resiliency (PEAR), along with partners at Educational Testing Service (ETS) and Project Liftoff. In 2014, a technical report was released, describing the tool and its psychometric properties (http://www.pearweb.org/research/pdfs/DoSTechReport_092314_final.pdf). The DoS observation tool focuses on understanding the quality of a STEM activity in an out-of-school time learning environment and includes an explanation of each dimension and its key indicators, as well as a 4-level rubric with descriptions of increasing quality. Today, over 700 people have been trained to use the DoS tool, and over 12 state networks have adopted DoS to measure the quality of their afterschool STEM programming.
DATE:
-
TEAM MEMBERS:
Program in Education, AfterschoolDr. Ashima ShahDrew Gitomer
resourceprojectProfessional Development, Conferences, and Networks
AccessComputing is a NSF-funded Broadening Participation in Computing alliance with the goal of increasing the participation and success of people with disabilities in computing fields. AccessComputing is in its 10th year of funding. It supports students with disabilities from across the country in reaching critical junctures toward college and careers by providing advice, resources, mentoring opportunities, professional contacts, and funding for tutoring, internships, and computing conferences. For educators and employers, it offers institutes and workshops to build awareness of universal design and accommodation strategies, and to aid in recruiting and supporting students with disabilities through the development of inclusive programs and education on promising practices.
This book offers museum learning researchers and practitioners--educators, explainers, and exhibit developers--a new approach for fostering group inquiry at interactive science exhibits. The Juicy Question game, developed at the Exploratorium in San Francisco, engages group members in a simple process of inquiry that helps them work together interrogate exhibit phenomena more deeply. and widens their both families and student field trip groups. The approach is easy to implement and yields clear results. The results are summarized in a set of practice principles that can be used by other
The Engineer Your Life (EYL) project is a national initiative to encourage college-bound young women to consider pursuing a degree and a career in engineering. The project aims to communicate to young women the societal value and rewards of being an engineer, rather than the traditional emphasis on the process of becoming an engineer. Target audiences include academically prepared high school girls, career counselors, and professional engineers. Evaluation data were collected in Year 1 and Year 2 of the EYL initiative to assess its impact. We found that young women were especially interested
DATE:
TEAM MEMBERS:
Concord Evaluation GroupChristine PaulsenChris BransfieldThea Sahr
The NEES network is comprised of a central management office (NEEScomm) located at Purdue University, and 14 geographically distributed earthquake and tsunami research facilities. We are considered to be a Large Facility within the Engineering division. We have been responsible for the coordination of centralized education, outreach and training activities at each of theses research facilities plus assessment of these activities. We have conducted a very successful REU program for the past 5 years. Additionally we maintain a repository of education modules and learning objects available on our website.
LIGO's Science Education Center is in charge of Education and Public Outreach Component for the LIGO Livingston Observatory. The three prime efforts are: (1) Professional development for teachers utilizing lab facilities and cross-institute collaborations. (2) Outreach to students K-16 (targeting 5- 9th grade), with on-site field trips to the LIGO Lab and Science Education Center, as well as off-site visits & presentations. (3) Outreach to the general public and community groups with on-site tours and Science Education Center Experience, as well as off=site visits and presentations. LIGO's Science Education Center is located at the LIGO Observatory, and has an auditorium, a classroom and a 5000 square foot exhibit hall with interactive exhibits at its disposal to complete its mission. In addition LIGO-SEC staff serve to help press and documentary film makers complete their missions in telling the "LIGO story" and encouraging budding scientists.