Libraries serve vital roles in communities not only for access to print media but also family programming and access to the internet. Because of their widespread local presence in communities and the diverse communities served, libraries are well-positioned to address inequalities in access to technology, family programming, and spaces for collaboration. Science centers, universities, and community centers represent resources that can partner with libraries to create science and technology-related content for delivery to diverse communities. Research has firmly established the link between parent engagement and a broad range of student academic outcomes, including higher student attendance, achievement and graduation rates. A growing body of research in out-of-school science learning is focusing on the rich and varied ways in which families learn science outside of school, including habits of mind, motivation, and identities as scientists. Pilot work showed that backpacks have the potential for youth and parents to take on new roles relative to STEM work, with parents or older siblings taking on roles of lab partners, translators, and even teachers. The Robotics and E-Textiles project will support increased capacity within libraries and community centers to hold robotics workshops for families in their own communities. Libraries and community centers will serve as vehicles through which families engage with robotics and e-textiles, resulting in wider access to Next Generation Science Standards' engineering practices to more people. This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. Librarians and community engagement leaders will participate in professional experiences to develop science and technology content and facilitation skills. University researchers in collaboration with project partners will use a design-based research methodology to iteratively design the professional development and backpack programs and to investigate learning processes and outcomes. The Cultural Learning Pathways theoretical model will guide the study of how engagement with robotics/e-textiles experiences can lead to changes in practice, identity, and deeper participation in communities of practice on the part of librarians, youth, and families. Although collaborations between public libraries and informal science providers are becoming increasingly common, this project will document the process of developing such collaborations and draw insights that may be applied to other contexts. By bringing together traditional and non-traditional community organizations to develop and facilitate STEM learning experiences, this project has the potential for resulting in a new model for a decentralized system of informal STEM education and broadening participation in STEM. Over the life of the project, the number of partner libraries will expand from one to four, and it is anticipated to reach more than 550 families. It is being conducted through a partnership between the University of Washington, the Pacific Science Center, the Seattle Public Libraries, and Red Eagle Soaring, a Native American community youth program.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This research project leverages ongoing longitudinal research to investigate whether, and if so how, youth from ages 10 to 15 in a diverse, under-resourced urban community become interested and engaged in STEM. The project addresses a global issue; fewer youth choose to major in scientific fields or take science coursework at high school or university levels. These declining numbers result in fewer STEM professionals and fewer scientifically literate citizens who are able to function successfully in an increasingly scientific and technological society. These declines are observed for youth as a whole, but are most pronounced for girls and particular non-white ethnic minorities. Data collected from youth in this community of study, including non-white ethnic minorities, mirrors this decline. NSF funding will support a five-year systematic and systemic process in which project researchers work collaboratively with existing informal and formal educational partners (e.g., museums, libraries, afterschool providers, schools) to develop sets of customized, connected, and coordinated learning interventions, in and out of school, for youth with different backgrounds, needs, and interests, all with the goal of averting or dampening this decline of STEM interest and participation during early adolescence. In addition to new research and community STEM networks, this project will result in a Community Toolkit that includes research instruments and documentation of network-building strategies for use by other researchers and practitioners nationally and internationally. This mixed methods exploratory study has two distinct but interrelated populations - youth and educators from across informal and formal institutions. To develop a clearer understanding of the factors that influence youths' STEM interest development over time, particularly among three youth STEM Interest Profiles identified in a secondary analysis (1-Dislike Math, 2-Like all STEM, 3-Dislike all STEM), the design combines surveys with in-depth interviews and observations. To study educators and institutions, researchers will combine interviews, focus groups, and observations to better understand factors that influence community-wide, data-driven approaches to supporting youth interest development. Research will be conducted in three phases with the goal of community-level change in youth STEM interest and participation. In Phase 1 (Years 1 & 2) four educational partners will develop interventions for a 6th and 7th grade youth cohort that will be iteratively refined through a design-based approach. Educational partners and researchers will meet to review and discuss interest and participation data and use these data to select content, as well as plan activities and strategies within their programs (using a simplified form of conjecture mapping). By Phase 2 (Years 3 & 4) four additional partners will be included, more closely modeling the complex system of the community. With support from researchers support and existing partners, new educational partners will similarly review and discuss data, using these to select content, as well as plan activities consistent with program goals and strategies. Additional interventions will be implemented by the new partners and further assessed and refined with a new 6th and 7th grade cohort, along with the existing interventions of the first four partners. In Phase 3 (Year 5) data will be collected on pre-post community-level changes in STEM interest and participation and the perceived effectiveness of this approach for youth. These data will inform future studies.
The range of contemporary "emerging" technologies with far-reaching implications for society (economic, social, ethical, etc.) is vast, encompassing such areas as bioengineering, robotics and artificial intelligence, genetics, neuro and cognitive sciences, and synthetic biology. The pace of development of these technologies is in full gear, where the need for public understanding, engagement and active participation in decision-making is great. The primary goal of this four-year project is to create, distribute and study a set of three integrated activities that involve current and enduring science-in-society themes, building on these themes as first presented in Mary Shelley's novel, Frankenstein, which will be celebrating in 2018 the 200th anniversary of its publication in 1818. The three public deliverables are: 1) an online digital museum with active co-creation and curation of its content by the public; 2) activities kits for table-top programming; and 3) a set of Making activities. The project will also produce professional development deliverables: workshops and associated materials to increase practitioners' capacity to engage multiple and diverse publics in science-in-society issues. The initiative is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project by Arizona State University and their museum and library collaborators around the country will examine the hypothesis that exposing publics to opportunities for interactive, creative, and extensive engagement within an integrated transmedia environment will foster their interest in science, technology, engineering and mathematics (STEM), develop their 21st century skills with digital tools, and increase their understanding, ability, and feelings of efficacy around issues in science-in-society. These three distinct yet interlocking modes of interaction provide opportunities for qualitative and quantitative, mixed-methods research on the potential of transmedia environments to increase the ability of publics to work individually and collectively to become interested in and involved with science-in-society issues.
STAR_Net brings inquiry-based STEM1 learning experiences to public libraries through two traveling exhibits, associated programming for library patrons, and a virtual community of practice for library staff and others who are interested in bringing STEM programming to libraries. In 2010, the National Science Foundation (NSF) awarded a three-year grant to the Space Science Institute’s (SSI) National Center for Interactive Learning (NCIL) and its partners—the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP)—to
Intuitive Company researchers and evaluators assessed four components of the DUST Alternate Reality Game for potential reusability: 1) QTE Environment during Collapse, 2) Brain/Health Scanner Mobile App, 3) Microbe Web App, 4) Star Map Web App. We assessed reusability based on five variables (facilitation, user identification, digital access, player type, and timing) along a continuum of informal to formal learning contexts, from museums to after school programs to formal classroom settings. Our assessment revealed that the: 1. QTE Environment during the Collapse is most replayable in its
DATE:
TEAM MEMBERS:
Brigham Young University, University of MarylandJes KoepflerNidhi JalwalVictor Yocco